Math, asked by asrilakshmit, 3 months ago

Divide this equation​

Attachments:

Answers

Answered by Anonymous
10

\large\sf\underline{Given\::}

  • \sf\:72m^{7}n^{5} \:by\: 24m^{2}n^{3}

\large\sf\underline{To\::}

  • Divide the given expression

\large\sf\underline{Solution\::}

\sf\:72m^{7}n^{5} \:by\: 24m^{2}n^{3}

\sf\implies\:\frac{72m^{7}n^{5}}{24m^{2}n^{3}}

\sf\implies\:\frac{\cancel{72}m^{7}n^{5}}{\cancel{24}m^{2}n^{3}}

\sf\implies\:\frac{\cancel{6}m^{7}n^{5}}{\cancel{2}m^{2}n^{3}}

\sf\implies\:\frac{\cancel{3}m^{7}n^{5}}{\cancel{1}m^{2}n^{3}}

\sf\implies\:\frac{3m^{7}n^{5}}{m^{2}n^{3}}

  • ‎ Using the property of indices

\sf\implies\:3m^{7-2}n^{5-3}

\large{\mathfrak\red{\implies\:3m^{5}n^{2}}}

‎ ________________________

\sf\:‎Indices\:some\:more\:formula\::‎

  • \sf\:a^{m} \times a^{n} = a^{m+n}

  • \sf\:\frac{a^{m}}{a^{n}} = a^{m-n}

  • \sf\:(a^{m})^{n} = a^{m \times n}

  • \sf\:a^{0}=1

  • \sf\:(ab)^{m}=a^{m} \times b^{m}

_______________________

_

!! Hope it helps !!

Similar questions