Math, asked by anwesha359, 2 months ago

divide using factorisation: (4u^2+25u-21) /(u+7)​

Answers

Answered by mehrakiran769
9

Answer:

4u-3

Step-by-step explanation:

4u²+25u-21

4u²+28u-3u-21

4u(u+7)-3(u+7)

(4u-3) (u+7)

So, answer is 4u-3

Answered by payalchatterje
0

Answer:

Required factor is 4u - 3

Step-by-step explanation:

Given,

 \frac{4 {u}^{2} + 25u - 21 }{u + 7}  \\  =  \frac{4 {u}^{2}   + (28 - 3)u - 21}{u + 7}  \\  =  \frac{4 {u}^{2} + 28u - 3u - 21 }{u + 7}  \\  =  \frac{4u(u + 7) - 3(u + 7)}{u + 7}  \\  =  \frac{(u + 7)(4u  -  3)}{u + 7}  \\  = 4u - 3

This is a problem of Algebra.

Some important Algebra formulas:

{(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2} \\  {(x  -  y)}^{2}  =  {x}^{2}   -  2xy +  {y}^{2} \\  {(x  + y)}^{3}  =  {x}^{3}  + 3 {x}^{2} y + 3x {y}^{2}  +  {y}^{3}  \\   {(x   -  y)}^{3}  =  {x}^{3}   -  3 {x}^{2} y + 3x {y}^{2}   -  {y}^{3} \\  {x}^{3}  +  {y}^{3}  =  {(x  +  y)}^{3}  - 3xy(x + y) \\ {x}^{3}   -  {y}^{3}  =  {(x   -   y)}^{3}   +  3xy(x  -  y) \\  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\    {x}^{2}  +  {y}^{2}  =  {(x - y)}^{2}   + 2xy \\ {x}^{2}   -  {y}^{2}  =  {(x   + y)}^{2}  - 2xy \\  {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  + xy +  {y}^{2} ) \\ {x}^{3}   +   {y}^{3}  = (x - + y)( {x}^{2}   -  xy +  {y}^{2} )

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

#SPJ2

Similar questions