Math, asked by DharitriPathak, 3 months ago

Divide using factorisation
 ({m}^{2}  - 14m - 32) \div (m + 2)

Answers

Answered by Anonymous
33

\large\sf\underline{Given\::}

  • \sf\:\frac{m^{2}-14m-32}{(m+2) }

\large\sf\underline{To\::}

  • Divide the given expression

\large\sf\underline{Solution\::}

\sf\:\frac{m^{2}-14m-32}{(m+2) }

  • Let's factorise the numerator by middle term breaking

So for factorising we need such two terms whose product gives us 32 and whose sum or difference would give us middle term ( 14 ) .

That two terms would be 16 and 2 .

  • 16 × 2 = 32

  • 16 - 2 = 14

Now substituting the two terms in the expression :

\sf\longrightarrow\:\frac{m^{2}-(16-2)m-32}{(m+2) }

  • Multiplying the terms in numerator

\sf\longrightarrow\:\frac{m^{2}-16m+2m-32}{(m+2) }

  • Taking m from first two terms and 2 from second two terms as common in numerator

\sf\longrightarrow\:\frac{m(m-16)+2(m-16)}{(m+2) }

  • Taking ( m - 16 ) common from whole terms in numerator

\sf\longrightarrow\:\frac{(m-16)(m+2)}{(m+2) }

\sf\longrightarrow\:\frac{(m-16)\cancel{(m+2)}}{\cancel{(m+2)}}

\small\fbox\red{★\:(\:m\:-\:16\:)}

!! Hope it helps !!

Similar questions