Math, asked by jainashah302, 10 months ago

Divide x^3+2x^4+6x-9 by x^3+3​

Answers

Answered by jk2523761
0

Answer:

This is your answer

Step-by-step explanation:

Hope it's help you

so mark me BRAINLIST

Attachments:
Answered by Tanujrao36
11

Answer :-

  • Quotient - (2x+1)

  • Remainder - (-12)

Method For Dividing :-

\tt \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:2x + 1  \\  \tt  {x}^{3}  + 3 \:   \mid \overline{2 {x}^{4}  +  {x}^{3}  +  {x}^{2}  + 6x - 9} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt \:  \:  2 {x}^{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  + 6x \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \underline{ \:   - \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    -   \:  \:  \:  \:  \:  \:  \:  \: } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt  \:  \:  \:  \:  \:  \:  \: {x}^{3}  +  {x}^{2}  - 9 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \tt \:  \:    {x}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \: +  3 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \underline{ - \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   -  \:  \:   \:  \:  \:  \: } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{  \:  \:  \:  \:  \tt \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   - 12 \:  \: }

So, after dividing we get that the quotient is 2x+1 and the remainder is -12

Verification :-

\sf{\boxed{\red{\dfrac{Dividend}{Divisor}=quotient+\dfrac{Remainder}{Divisor}}}}

As , we know the value of Dividend, Divisor , quotient and Remainder. Put those value in the formula for the verification of our answer.

L.H.S

\sf{\boxed{\dfrac{2\ x^{4}+\ x^{3}+6x-9}{\ x^{3}+3}}}

R.H.S

\sf{(2x+1)+(\dfrac{-12}{\ x^{3}+3})}

\sf{(2x+1)-(\dfrac{12}{\ x^{3}+3})}

  • Now , take the LCM and solve the equation

\sf{\dfrac{2\ x^{4}+\ x^{3}+6x+3-12}{\ x^{3}+3}}

\sf{\boxed{\dfrac{2\ x^{4}+\ x^{3}+6x-9}{\ x^{3}+3}}}

Hence Verified !

\sf{\underline{\underline{\orange{Some\:points\:related\:to\:Divide}}}}

  1. On dividing if there are same signs (+ , +) or (- , -) then the answer will be positive
  2. If the signs are different (+ , -) then the answer will be negative
Similar questions