Math, asked by pravin29101971, 9 months ago

divide x^3-64;x-4 by synthetic method​

Answers

Answered by gudasanjanag
4

Step-by-step explanation:

I hope this answer is very helpful to you

and thank you for giving this question because I have learned yesterday itself this method

Attachments:
Answered by nithishkannan1826
0

Answer:

hope this helps you please mark it as the brainliest and please follow me if you want to.

Step-by-step explanation:

STEP

1

:

           x3 - 64

Simplify   ———————

            x + 4  

Trying to factor as a Difference of Cubes:

1.1      Factoring:  x3 - 64  

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into

             (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =

           a3+a2b+ab2-ba2-b2a-b3 =

           a3+(a2b-ba2)+(ab2-b2a)-b3 =

           a3+0+0+b3 =

           a3+b3

Check :  64  is the cube of   4  

Check :  x3 is the cube of   x1

Factorization is :

            (x - 4)  •  (x2 + 4x + 16)  

Trying to factor by splitting the middle term

1.2     Factoring  x2 + 4x + 16  

The first term is,  x2  its coefficient is  1 .

The middle term is,  +4x  its coefficient is  4 .

The last term, "the constant", is  +16  

Step-1 : Multiply the coefficient of the first term by the constant   1 • 16 = 16  

Step-2 : Find two factors of  16  whose sum equals the coefficient of the middle term, which is   4 .

     -16    +    -1    =    -17  

     -8    +    -2    =    -10  

     -4    +    -4    =    -8  

     -2    +    -8    =    -10  

     -1    +    -16    =    -17  

     1    +    16    =    17  

     2    +    8    =    10  

     4    +    4    =    8  

     8    +    2    =    10  

     16    +    1    =    17  

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Polynomial Long Division :

1.3    Polynomial Long Division

Dividing :  x-4  

                             ("Dividend")

By         :    x+4    ("Divisor")

dividend     x  -  4  

- divisor  * x0     x  +  4  

remainder      -  8  

Quotient :  1  

Remainder :  -8  

Final result :

 (x - 4) • (x2 + 4x + 16)

 ————————————————————————

          x + 4          

See results of polynomial long division:

1. In step #01.03

Similar questions