Math, asked by itsmekritika, 1 year ago

divide x^4+1 by x-1 and find quotient and remainder

Answers

Answered by MaheswariS
6

Divide x^4+1 by x-1 and find quotient and remainder

\underline{\textbf{Given:}}

\mathsf{x^4+1{\div}x-1}

\underline{\textbf{To find:}}

\mathsf{The\;qutient\;and\;remainder\;when\;x^4+1}

\mathsf{is\;divided\;by\;(x-1)}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{x^4+1}{x-1}}

\textsf{This can be written as,}

\mathsf{=\dfrac{(x^4-1)+2}{x-1}}

\mathsf{=\dfrac{((x^2)^2-1^2)+2}{x-1}}

\textsf{Using the identity,}\;\boxed{\mathsf{a^2-b^2=(a-b)(a+b)}}

\mathsf{=\dfrac{(x^2-1)(x^2+1)+2}{x-1}}

\mathsf{=\dfrac{(x^2-1^2)(x^2+1)+2}{x-1}}

\mathsf{=\dfrac{(x-1)(x+1)(x^2+1)+2}{x-1}}

\mathsf{=\dfrac{(x-1)(x+1)(x^2+1)}{x-1}+\dfrac{2}{x-1}}

\mathsf{=(x+1)(x^2+1)+\dfrac{2}{x-1}}

\mathsf{=x^3+x^2+x+1+\dfrac{2}{x-1}}

\textsf{On division, we get}

\mathsf{Quotient=x^3+x^2+x+1}

\mathsf{Remainder=2}

Answered by NirajKumarrana
1

Answer:

remainder=2, quotient=x^3+x^2+x+1

Step-by-step explanation:

see the image below

Similar questions