Math, asked by Anonymous, 1 year ago

divide( x-y)/ x^3/4+x^1/2*y^1/4 by (x^1/2 +y^1/2)/x^1/2*y^1/4+x^1/4*y^1/2


dnshanker: write the problem properly
dnshanker: no is it one problem

Answers

Answered by AvmnuSng
2
\frac{x - y}{ x^{ \frac{3}{4} } +  x^{ \frac{1}{2} }  y^{ \frac{1}{4} } } ÷ \frac{ x^{ \frac{1}{2} } +  y^{ \frac{1}{2}  } }{ x^{ \frac{1}{2} }  y^{ \frac{1}{4} } + x^{ \frac{1}{4} }  y^{ \frac{1}{2} }}

\frac{x - y}{ x^{ \frac{3}{4} } + x^{ \frac{1}{2} } y^{ \frac{1}{4} } } × \frac{ x^{ \frac{1}{2} } y^{ \frac{1}{4} } + x^{ \frac{1}{4} } y^{ \frac{1}{2} } }{ x^{ \frac{1}{2} } + y^{ \frac{1}{2} }}

\frac{( x^{ \frac{1}{2} } -  y^{ \frac{1}{2} } )( x^{ \frac{1}{2} } +  y^{ \frac{1}{2} } )}{x^{ \frac{1}{2} } ( x^{ \frac{1}{4} } +  y^{ \frac{1}{4} } )}  ×  \frac{x^{ \frac{1}{4} } y^{ \frac{1}{4} } ( x^{ \frac{1}{4} } +  y^{ \frac{1}{4} } )}{x^{ \frac{1}{2} } +  y^{ \frac{1}{2} } }

\frac{x^{ \frac{1}{4} } y^{ \frac{1}{4} } ( x^{ \frac{1}{2} } - y^{ \frac{1}{2} } )} { x^{ \frac{1}{2} } }

\frac{y^{ \frac{1}{4} } ( x^{ \frac{1}{2} } - y^{ \frac{1}{2} } )} { x^{ \frac{1}{4} } }
Similar questions