Math, asked by AdityaAnthick, 1 day ago

Divide (x⁴+6x²+25)/(x²-2x+1)​

Answers

Answered by Anonymous
1

To Do -

  • Divide (x⁴+6x²+25) by (x²-2x+1)

Solution:-

By long Division-

\begin{gathered} \begin{array}{c|c}& \rm \red{{x}^{2}  + 3 x  + 11} \\ \hline\sf  {x}^{2}  - 2x + 1 & \sf  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:     \:  \: \cancel{x}^{4}  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \:  +{6x}^{2}  + 25\\ &( - ) \sf \cancel {x}^{4}  - 3 {x}^{3} +  {x}^{2}\\& \  - \:   \:  +  \:  \:  \: \:  \:  \:   \: - \\ \hline&  \:  \:  \:  \:  \:  \:  \:  \:  \sf \pink{ \cancel{3x ^{3}}  + 5 {x}^{2} +   25}\\& (- )\pink{ \cancel{ \sf {3x}^{3}}  - 6 {x}^{2} + 3x } \\&  \:  \:  \:  \:  \:   \:  \:  \:  \:    +   \:  \:  \:  \:  \:  \:  \:  \:   -   \\ \hline & \:  \: \:  \:  \:  \:  \:  \orange{\sf \cancel{11 {x}^{2} }   - 3x   + 25 }\\& ( - )\orange{ \sf \cancel{11 {x}^{2} } - 22x + 11 }\\&   \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \:  +  \:    \:  \:  \:  \:  \:  \: \: \: - \\ \hline & \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 19x + 14 \\ \hline\end{array}\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf  Quotient = x^2+3x+11\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf  Remainder = 19x+14\\\end{gathered}

Similar questions