Math, asked by pallavidangui752, 6 hours ago

divide:-x⁴+x³+x²-5x+1 by x+1​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\red{\rm :\longmapsto\:\dfrac{ {x}^{4}  +  {x}^{3}  +  {x}^{2}  - 5x + 1}{x + 1}}

So, we have

\rm :\longmapsto\:Dividend :  {x}^{4} +  {x}^{3} +  {x}^{2} - 5x + 1

\rm :\longmapsto\:Divisor : x + 1

Now, using Long Division, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{3} +  x - 6\:\:}}}\\ {\underline{\sf{x + 1}}}& {\sf{\: {x}^{4} +  {x}^{3} + {x}^{2} - 5x + 1\:\:}} \\{\sf{}}& \underline{\sf{\:\:  \:  \:   -  {x}^{4} - {x}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:   \:\:}} \\ {{\sf{}}}& {\sf{\:  \:  \:  \:  \:  \:  \:  \:  \:{x}^{2} - 5x +  1\:  \:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \:  \:  \:   \:  \:  \:    - {x}^{2}  - x  \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 6x + 1  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:6x + 6\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:7\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

So,

\rm \implies\:Quotient :  {x}^{3} + x - 6

\rm \implies\:Remainder : 7

Verification

Consider

\rm :\longmapsto\:Divisor \times Quotient + Remainder

\rm \:  =  \: (x + 1)( {x}^{3} + x - 6) + 7

\rm \:  =  \:  {x}^{4} +  {x}^{2} - 6x +  {x}^{3} + x - 6 + 7

\rm \:  =  \:  {x}^{4} +  {x}^{3} +  {x}^{2}  - 5x + 1

\rm \:  =  \: Dividend

Hence, Verified

Answered by Anonymous
11

Solution :-

p(x) =  {x}^{4}  +  {x}^{3}  +  {x}^{2}  - 5x + 1

q(x) =  {x}^{3}  +  {x}^{ - 6}

r(x) = 7

9(x) = x + 1

Putting value :-

p(x) = g(x)  \times q(x) + r(x)

p(x) = ( {x}^{3}  + x - 6)(x + 1)

 {x}^{4}  +  {x}^{3}  + x {}^{2}  + x - 6x - 6 + 7

Similar questions