Math, asked by roy5060, 7 months ago

Divide(y²+2y-3)÷(y-1)​

Answers

Answered by kumarbrajesh97193500
0

Step-by-step explanation:

mark me as a brainlist plzzzz

Attachments:
Answered by Anonymous
18

Answer :

›»› (y² + 2y - 3) ÷ (y - 1) = y + 3

Given :

  • (y² + 2y - 3) ÷ (y - 1)

To Divide :

  • (y² + 2y - 3) ÷ (y - 1)

How To Divide?

\begin{array}{c}\sf x-y )\; \cancel{y^2}+2y-3\;(y+3\\\sf\qquad{\cancel{y^2}-y\qquad}\qquad\;\\\underline{\quad\;\;-\;\;\;\;\;\;\;+\;\;\;\;\;\;}\quad\qquad\\\sf \cancel{3y} - 3\\\sf \underline{\qquad\quad \cancel{3y}-3\quad}\qquad\\\sf  \:  \:  \:  \:  \:  \:   \:  \: \: 0\end{array}

Required Solution :

Let's start solving the problem and understand the steps to get our final result.

\tt{: \implies  \dfrac{ {y}^{2}  + 2y - 3}{y - 1}}

Factorize the expression,

\tt{: \implies  \dfrac{(y - 1)(y + 3)}{y - 1} }

Seperate the common factor, y - 1,

\tt{: \implies  \dfrac{(y - 1)(y + 3)}{y - 1} }

Do the reduction of the fraction by the common factors,

\tt{: \implies  \dfrac{y + 3}{1}}

If a certain expression is divided by 1, the expression remains as it is,

\bf{: \implies \underline{ \:  \:  \underline{ \red{ \: y + 3 \: }} \:  \: }}

Hence, the Divide of (y² + 2y - 3) ÷ (y - 1) is y + 3.

Similar questions