dividing 3x² + 4x + 5 x 0 - 13 by
the quotient and remainder
polynomial g(x)
Answers
Answer:
Given that,
let Polynomial p(x)=3x 3 +4x² +5x−13
quotient g(x)=3x+10
remainder r(x)=16x−43
g(x)=?
Now,
we know that
Euclid division lemma theorem,
p(x)=g(x) × q(x) + r(x)
p(x)=g(x) × q(x) + r(x)3x 3 +4x² + 5x − 13 = g(x) × (3x+10) + (16x−43)
3x3 +4x² + 5x−13 − 16x+43=g(x) × (3x+10)
now, dividing,
3x+10)3x³ +4x² −11x + 30(x² −2x+3−3x
3 + 10x²
_____________
−6x² −11x
−11x−6x² −20x
_____________
9x+30
9x+309x+30
_____________
0
0Hence, g(x)=x² −2x + 3
This is the answer.
Given that,
let Polynomial p(x)=3x 3 +4x² +5x−13
quotient g(x)=3x+10
remainder r(x)=16x−43
g(x)=?
Now,
we know that
Euclid division lemma theorem,
p(x)=g(x) × q(x) + r(x)
p(x)=g(x) × q(x) + r(x)3x 3 +4x² + 5x − 13 = g(x) × (3x+10) + (16x−43)
3x3 +4x² + 5x−13 − 16x+43=g(x) × (3x+10)
g(x) = \frac{3x³+ 4x² - 11x + 30}{3x + 10}g(x)=
3x+10
3x³+4x²−11x+30
now, dividing,
3x+10)3x³ +4x² −11x + 30(x² −2x+3−3x
3 + 10x²
_____________
−6x² −11x
−11x−6x² −20x
_____________
9x+30
9x+309x+30
_____________
0
0Hence, g(x)=x² −2x + 3
This is the answer.