division of polynomials
Answers
Answer:
In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, because it separates an otherwise complex division problem into smaller ones.
A polynomial is an algebraic expression of the type anxn + an−1xn−1+…………………a2x2 + a1x + a0, where “n” is either 0 or positive variables and real coefficients.
In this expression, an, an−1…..a1,a0 are coefficients of the terms of the polynomial.
The highest power of x in the above expression, i.e. n is known as the degree of the polynomial.
If p(x) represents a polynomial and x = k such that p(k) = 0 then k is the root of the given polynomial.
The division is the process of splitting a quantity into equal amounts. In terms of mathematics, the process of repeated subtraction or the reverse operation of multiplication is termed as division. For example, when 20 is divided by 4 we get 5 as the result since 4 is subtracted 5 times from 20.
The four basic operations viz. addition, subtraction, multiplication and division can also be performed on algebraic expressions. Let us understand the process and different methods of dividing polynomials and algebraic expressions.
For dividing polynomials, generally, three cases can arise:
- Division of a monomial by another monomial
- Division of a polynomial by monomial
- Division of a polynomial by binomial
- Division of a polynomial by another polynomial