Math, asked by SmartBoard06, 2 days ago

– Division of Polynomials –

– Complete each item below by finding the missing factor. Write your answer on the space provided.

1. x² - 16 = ( x + 4 ) ( ___________ ).

2. x³ + 4x² - 9 = ( x + 3 ) ( __________ ).

3. 3x³ + 4x² + 11x - 10 = ( 3x - 2 ) ( __________ ).

4. 4x³ + 11x² - 11x + 2 = ( 4x - 1 )( __________ ).

5. 5x³ + 10x² + x + 2 = ( x + 2 )( __________ ).

– Nonsense will be deleted to our Moderator!​

Answers

Answered by mehermohit690
4

Answer:

x² - 16 = ( x + 4 ) ( ___________ ).

2. x³ + 4x² - 9 = ( x + 3 ) ( __________ ).

3. 3x³ + 4x² + 11x - 10 = ( 3x - 2 ) ( __________ ).

4. 4x³ + 11x² - 11x + 2 = ( 4x

Answered by stefangonzalez246
1

Division of Polynomials.

1. x^{2} - 16 = ( x + 4 ) ( x - 4 ).

2. x^{3} + 4x^{2} - 9 = ( x + 3 ) ( x^{2}+x-3).

3. 3x^{3} + 4x^{2} + 11x - 10 = ( 3x - 2 ) ( x^{2}+2x+5 ).

4. 4x^{3}+ 11x^{2} - 11x + 2 = ( 4x - 1 )( x^{2} + 3x -2 ).

5. 5x^{3} + 10x^{2} + x + 2 = ( x + 2 )(5x^{2}+1).(3x-2)(x^{2} +2x+5)

Explanation:

  • Factorizing the given value we get,

         1. x^{2}-16 - we can write as x^{2} - 4^{2}. Using formula, The given value can be written as (x+4)(x-4).

        2. x^{3} + 4x^{2} -9 - By taking common factors (x+3)(\frac{x^{3}+4x^{2}-9}{x+3}). Simplifying the numerator and denominator we get x^{2} +x-3. Result is (x+3)(x^{2} +x-3).

         3. 3x^{3}  + 4x^{2}  + 11x - 10    - Taking the Common Factors out we get,

(3x-2)(\frac{3x^{3}  + 4x^{2}  + 11x - 10}{3x-2} ) which is simplified as (3x-2)(x^{2} +2x+5).

         4. 4x^{3} + 11x^{2}  - 11x + 2   - Taking the Common Factors out we get,

(4x-1)(\frac{4x^{3}+11x^{2} -11x+2 }{4x-1} ) which gives (4x-1)(x^{2} +3x-2).

         5. 5x^{3} + 10x^{2}  + x + 2  segregating the values we get ,(5x^{3}+10x^{2} ) ( x+2)

Factoring out 5x^{2} from the equation 5x^{2} (x+2)+(x+2) = (x+2)(5x^{2} +1).

Similar questions