Math, asked by kumarismarika1, 4 months ago

Division (using factorise) x² - 17x + 16 by x - 16​

Answers

Answered by Anonymous
20

Answer:

\huge{\underline{\underline{\tt{\blue(.Question}}}}

Division (using factorise) x² - 17x + 16 by x - 16

\huge{\underline{\underline{\tt{\blueſ.Answer}}}}

\huge{\underline{\underline{\tt{\blueſ.(x-1)}}}}

Step-by-step explanation:

On factorising, x² - 17x + 16

x²-17x+16

x²-x-16x+16

x(x-1)-16(x-1)

(x-16)(x-1)

Now, On  division

 (x-16)(x-1)/(x-16)

\huge{\underline{\underline{\tt{\blueſ.(x-1)}}}}

Answered by Anonymous
9

 \bf  \large \bold{ \underline{\underline \pink{Given :}}}

 \bf \small {Polynomial \:  {x}^{2}  - 17x + 16 \: and \: x - 16}

 \bf \large{ \underline {\underline \orange{Required \: answer : }}}

 \bf \small{To \: divide \: the \: given \: polynomials}  \\  \bf \small{ using \: factor isation}

 \bf \large {\underline {\underline {\red{Solution : }}}}

 \bf \small{Factorise  \: \:  {x}^{2}   -  17x + 16}

 \implies \sf{ {x}^{2}  - 17x + 16}

 \implies \sf{ {x}^{2}  - 16x - x + 16}

 \implies \sf{x(x - 16) - (x - 16)}

 \implies \sf{(x - 16)(x - 1)}

 \bf{Dividing \: (x - 16)(x - 1) \: by \: x - 16} \\  \bf{we \: get,}

 \implies \sf{ \frac{(x - 16)(x - 1)}{(x - 16)} } = x - 1

 \bf \small \blue {Hence, \: (x - 1) \: is \: the \: solution.}

Similar questions