Math, asked by adalixyz, 1 year ago

do asap please tomorrow is my exam

Attachments:

Answers

Answered by Inflameroftheancient
10

Hey there!

a) Inverse the numerator and the denominator for multiplying the products, to continue the simplification of the given expression:

\bf{\dfrac{x^2 - 7x + 6}{x + 4} \times \dfrac{x^2 - 16}{(x - 1)^2}}

\bf{\dfrac{\Big(x^2 - 7x + 6 \Big) \Big(x^2 - 16 \Big)}{(x + 4)(x - 1)^2}}

\bf{\dfrac{(x - 1)(x - 6)(x^2 - 16)}{(x - 1)^2 (x + 4)}}

\bf{\dfrac{(x - 6)(x^2 - 16)}{(x + 4)(x - 1)}}

\bf{\dfrac{(x - 6)(x + 4)(x - 4)}{(x + 4)(x - 1)}}

\boxed{\bf{\underline{\therefore \quad Final \: \: Answer: \: \: \dfrac{(x - 6)(x - 4)}{x - 1}}}}

b) Cancel out the common factors, to get the solution:

\bf{6pq - \dfrac{12pq^2}{6pq}}

\bf{6pq - \dfrac{2pq^2}{pq}}

\bf{6pq - \dfrac{2q^2}{q}}

\boxed{\bf{\underline{\therefore \quad Final \: \: Answer: \: \: 6pq - 2q}}}

If it's telling to do this further, then group the common factor:

\bf{3 \times 2pq - 2q}

\boxed{\bf{\underline{\therefore \quad Final \: \: Answer: \: \: 2q(3p - 1)}}}

c) For this, just factor out the terms, and obtain the final answer:

\bf{\dfrac{x^2 + 5x + 6}{x + 2}}

\bf{\dfrac{(x^2 + 2x) + (3x + 6)}{x + 2}}

\bf{\dfrac{x(x + 2) + 3(x + 2)}{x + 2}}

\bf{\dfrac{(x + 2)(x + 3)}{x + 2}}

\boxed{\bf{\underline{\therefore \quad Final \: \: Answer: \: \: (x + 3)}}}

Hope it helps and clears the doubts for simplifying the given terms!!!!!


siddhartharao77: Nice explanation :-)
Inflameroftheancient: Thnx sid bro
VickyskYy: brillient
VickyskYy: brilliant*
Inflameroftheancient: Thnx bro
Similar questions