Math, asked by aditi14314, 2 months ago

do completing of square of quadratic equation 3x^2 - 4√3x + 4 = 0


please answer correctly !!​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {3x}^{2} - 4 \sqrt{3}x + 4 = 0

can be rewritten as

\rm :\longmapsto\: {3x}^{2} - 4 \sqrt{3}x  =  -  \: 4

Step :- 1 To make the coefficient of x² unity, divide both sides by 3, we get .

\rm :\longmapsto\: {x}^{2} - \dfrac{4}{3}  \sqrt{3}x =  -  \: \dfrac{4}{3}

Step :- 2 Add and subtract the square of half the coefficient of x, we get

\rm :\longmapsto\: {x}^{2} - \dfrac{4}{3}  \sqrt{3}x + \dfrac{4}{3}  =  -  \: \dfrac{4}{3}  + \dfrac{4}{3}

can be rewritten as

\rm :\longmapsto\: {x}^{2} - \dfrac{4}{3}  \sqrt{3}x + \dfrac{4}{3}  =  0

\rm :\longmapsto\: {x}^{2} - \dfrac{4}{3}  \sqrt{3}x + \dfrac{4}{9} \times 3  =  0

\rm :\longmapsto\: {x}^{2} - 2 \times \dfrac{2}{3}  \sqrt{3} \times x +  {  \bigg(\dfrac{2 \sqrt{3} }{3}  \bigg)}^{2}   =   0

We know,

\boxed{ \sf{ \: {x}^{2} - 2xy +  {y}^{2} =  {(x - y)}^{2}}}

So, using this identity, we get

\rm :\longmapsto\:  {  \bigg(x - \dfrac{2 \sqrt{3} }{3}  \bigg)}^{2}   =  0

\rm :\longmapsto\: x - \dfrac{2 \sqrt{3} }{3}    =  0

\bf :\longmapsto\: x  =  \dfrac{2 \sqrt{3} }{3}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions