Math, asked by jeevankishorbabu9985, 3 months ago

Do Integration please
 \huge \red \: \green \int \blue (\frac{ \sqrt[]{x}  + 1}{x} \blue)^{2}

Answers

Answered by hukam0685
3

Step-by-step explanation:

Given:

\int \bigg(\frac{ \sqrt[]{x} + 1}{x} \bigg)^{2}dx \\  \\

To find: Solution of Integration

Solution:

First expand the given function

( {a + b)}^{2}  =  {a}^{2}  +  {b}^{2} + 2ab \\  \\

So,

\int \frac{ (\sqrt[]{x} + 1)^{2} }{x ^{2} } dx \\  \\

\int \frac{ (\sqrt{x}) ^{2} + 1 + 2 \sqrt{x}  }{x ^{2} } dx \\  \\ \int \frac{ x+ 1 + 2 \sqrt{x}  }{x ^{2} } dx \\  \\ \int \bigg( \frac{ x}{ {x}^{2}}  + \frac{1}{ {x}^{2} }   +  \frac{2 \sqrt{x} }{ {x}^{2} }  \bigg) dx \\  \\ \int  \frac{ 1}{ {x}} dx + \int \frac{1}{ {x}^{2} } dx  +   \int\frac{2 \sqrt{x} }{ {x}^{2} }   dx \\  \\ \int  \frac{ 1}{ {x}} dx + \int \frac{1}{ {x}^{2} } dx  + 2 \int {x}^{ \frac{ - 3}{2} }   dx \\  \\

Now,do integration by applying power rule

log \: x +  \frac{ {x}^{ - 2  + 1} }{ - 2  +  1}  + 2 \frac{ {x}^{ \frac{ - 3}{2}  + 1 } }{  \frac{ - 3}{2}   +  1}  + C \\  \\

log \: x -  {x}^{ - 1}  - 4 {x}^{ \frac{ - 1}{2} }  + C

or

log \: x -  \frac{1}{x}  -  \frac{4}{ \sqrt{x} }  + C \\  \\

Thus,

Final Answer:

\int \bigg(\frac{ \sqrt[]{x} + 1}{x} \bigg)^{2}dx  =log \: x -  \frac{1}{x}  -  \frac{4}{ \sqrt{x} }  + C\\  \\

Hope it helps you.

To learn more on brainly:

\displaystyle \int_0^{ \frac{\pi}{2} } cos^5 x\ dx = \:?\:

Solve the math by " Wallie's theorem " with expl...

https://brainly.in/question/40746411

Similar questions