Physics, asked by masterYuci, 4 months ago

do it............... ​

Attachments:

Answers

Answered by BrainlyEmpire
1

We need to find the value of,

\longrightarrow \Delta=\left|\begin{array}{ccc}a+b+c&-c&-b\\-c&a+b+c&-a\\-b&-a&a+b+c\end{array}\right|

Performing R_1\to R_1+R_2,

\longrightarrow \Delta=\left|\begin{array}{ccc}a+b&a+b&-a-b\\-c&a+b+c&-a\\-b&-a&a+b+c\end{array}\right|

Taking a+b common from R_1,

\longrightarrow \Delta=(a+b)\left|\begin{array}{ccc}1&1&-1\\-c&a+b+c&-a\\-b&-a&a+b+c\end{array}\right|

Performing R_2\to R_2+R_3,

\longrightarrow \Delta=(a+b)\left|\begin{array}{ccc}1&1&-1\\-b-c&b+c&b+c\\-b&-a&a+b+c\end{array}\right|

Taking b+c common from R_2,

\longrightarrow \Delta=(a+b)(b+c)\left|\begin{array}{ccc}1&1&-1\\-1&1&1\\-b&-a&a+b+c\end{array}\right|

Performing C_3\to C_1+C_2+C_3,

\longrightarrow \Delta=(a+b)(b+c)\left|\begin{array}{ccc}1&1&1\\-1&1&1\\-b&-a&c\end{array}\right|

Performing R_1\to R_1-R_2,

\longrightarrow \Delta=(a+b)(b+c)\left|\begin{array}{ccc}2&0&0\\-1&1&1\\-b&-a&c\end{array}\right|

Now, expanding the determinant along R_1, we get,

\longrightarrow\underline{\underline{\Delta=2(a+b)(b+c)(c+a)}}

If \Delta=0, atleast one among the following condition should be satisfied.

a+b=0

b+c=0

c+a=0

which means one among a,\ b and c should be additive inverse of the other.

Answered by BʀᴀɪɴʟʏAʙCᴅ
0

☘️ See the attachment picture for Explanation.

\Large\mathbb\pink{THANKS} \\

\Large\mathbb\green{HOPE\: IT'S\: HELPFUL} \\

Attachments:
Similar questions