Math, asked by dastagirmoinmd, 1 month ago

do it and send fast ..

Attachments:

Answers

Answered by IlMYSTERIOUSIl
4

Given Question :-

  • I have '50
  • I spend '20 . Have a balance of '30
  • I spend '15 . Have a balance of '15
  • I spend '9 . Have a balance of '6
  • I spend '6 . Have a balance of '0
  • The total amount spent is '50
  • However , if you calculate the balance , you will get a total of '51 . How is this possible ?

Required Answer :-

Here we can see that ,

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{cccc}\sf spend &\sf balance  \\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}\\\sf 20&\sf 30 \\\\\sf 15 &\sf 15 \\\\\sf 9&\sf 6 \\\\\sf 6&\sf 0  \\\dfrac{\qquad \qquad \qquad \qquad}{ \bf50}&\dfrac{\qquad \qquad \qquad \qquad}{\bf{51}}\end{array}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}

There is no problem with the number

  • Balance + Total Spent = 50

But it is not true that ,

  • sum of balance = 50 (Not true)

Like ,

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{cccc}\sf spend &\sf balance  \\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}\\\sf s_{1}&\sf 50 - s_{1} \\\\\sf s_{2} &\sf 50 - s_{1} - s_{2} \\\\\sf s_{3}&\sf 50 - s_{1} - s_{2} -  s_{3} \\\\\sf s_{4}&\sf 50 - s_{1} - s_{2}  -  s_{3} -  s_{4} \\\dfrac{\qquad \qquad \qquad \qquad}{ \bf Σsi}&\dfrac{\qquad \qquad \qquad \qquad}{\bf{200 - 4s_{1} - 3s_{2}  -  2s_{3} -  s_{4}}}\end{array}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}

and on putting the value ,

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{cccc}\sf spend &\sf balance  \\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}\\\sf 20&\sf 50 - 20 = 30 \\\\\sf 15 &\sf 50 - 20 - 15 = 15 \\\\\sf 9&\sf 50 - 20 - 15  - 6= 9\\\\\sf 6&\sf 50 - 20 - 15  - 9 - 6= 0 \\\dfrac{\qquad \qquad \qquad \qquad}{ \bf 50}&\dfrac{\qquad \qquad \qquad \qquad}{ \sf{200 - 20 - 15  - 9 - 6 =  \bf51}}\end{array}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}

★ Hence , Proved

Similar questions