Math, asked by prabhgunkhanduja, 1 month ago

Do it fast !!!!!!!
27 ponits
BRAINLIEST

Attachments:

Answers

Answered by Anonymous
37

Solution :-

  • (a) \bf{\dfrac{2}{\sqrt{3} - 1}}

Rationalising the denominator

\tt\dashrightarrow{\dfrac{2}{\sqrt{3} - 1} \times \dfrac{\sqrt{3} + 1}{\sqrt{3} + 1}}

\tt\dashrightarrow{\dfrac{2( \sqrt{3} + 1)}{(\sqrt{3})^2 - (1)^2}}

\tt\dashrightarrow{\dfrac{2 (\sqrt{3} + 1)}{3 - 1}}

\tt\dashrightarrow{\dfrac{\cancel{2} (\sqrt{3} + 1)}{\cancel{2}}}

\bf\dashrightarrow{\orange{\sqrt{3} + 1}}

━━━━━━━━━━━━━━━━━━━━━━

  • (b) \bf{\dfrac{7}{\sqrt{12} - \sqrt{5}}}

Rationalising the denominator

\tt\dashrightarrow{\dfrac{7}{\sqrt{12} - \sqrt{5}} \times \dfrac{\sqrt{12} + \sqrt{5}}{\sqrt{12} + \sqrt{5}}}

\tt\dashrightarrow{\dfrac{7(\sqrt{12} + \sqrt{5})}{(\sqrt{12})^2 - (\sqrt{5})^2}}

\tt\dashrightarrow{\dfrac{7(\sqrt{12} + \sqrt{5}}{12 - 5}}

\tt\dashrightarrow{\dfrac{\cancel{7}(\sqrt{12} + \sqrt{5})}{\cancel{7}}}

\bf\dashrightarrow{\orange{\sqrt{12} + \sqrt{5}}}

━━━━━━━━━━━━━━━━━━━━━━

  • (c) \bf{\dfrac{1}{8 + 3 \sqrt{5}}}

Rationalising the denominator

\tt\dashrightarrow{\dfrac{1}{8 + 3 \sqrt{5}} \times \dfrac{8 - 3 \sqrt{5}}{8 - 3 \sqrt{5}}}

\tt\dashrightarrow{\dfrac{8 - 3 \sqrt{5}}{(8)^2 - (3 \sqrt{5})^2}}

\tt\dashrightarrow{\dfrac{8 - 3 \sqrt{5}}{64 - 45}}

\bf\dashrightarrow{\orange{\dfrac{8 - 3 \sqrt{5}}{19}}}

━━━━━━━━━━━━━━━━━━━━━━

Answered by aslam445366
2

Step-by-step explanation:

yes first question and same answer with me so right from their good

Similar questions