Math, asked by khanmahera880, 2 months ago

do it fast...please help me...​

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\: {13}^{3} -  {5}^{3}  \: is \: divisible \: by \: 8

\large\underline{\sf{Solution-}}

We know that

\rm :\longmapsto\: {x}^{3} -  {y}^{3}  = (x - y)( {x}^{2} + xy +  {y}^{2})

On substituting x = 13 and y = 8, we get

\rm :\longmapsto\: {13}^{3} -  {5}^{3}

\rm \:  =  \:  \: (13 - 5)( {13}^{2} + 13 \times 5 +  {5}^{2})

\rm \:  =  \:  \: 8(169 + 65 + 25)

\rm \:  =  \:  \: 8 \times 259

\bf\implies \: {13}^{3} -  {5}^{3} = 8 \times 259

\bf\implies \: {13}^{3} -  {5}^{3} = 8k

\bf\implies \: {13}^{3} -  {5}^{3} \: is \: multiple \: of \: 8

\bf\implies \: {13}^{3} -  {5}^{3} \: is \: divisible \: by \: 8

Additional Information :-

More Identities to know

\boxed{ \rm \:  {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2}}

\boxed{ \rm \:  {(x  -  y)}^{2} =  {x}^{2}   -  2xy +  {y}^{2}}

\boxed{ \rm \:  {(x + y)}^{2} -  {(x - y)}^{2}  = 4xy}

\boxed{ \rm \:  {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2} +  {y}^{2})  }

\boxed{ \rm \: (x + y)(x - y) =  {x}^{2} -  {y}^{2} }

\boxed{ \rm \:  {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}

\boxed{ \rm \:  {(x  -  y)}^{3} =  {x}^{3}  -   {y}^{3}  -  3xy(x  -  y)}

\boxed{ \rm \:  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2})}

\boxed{ \rm \:  {x}^{3} -  {y}^{3} = (x  -  y)( {x}^{2}  +  xy +  {y}^{2})}

\boxed{ \rm \:  {x}^{4} -  {y}^{4} = (x - y)(x + y)( {x}^{2} +  {y}^{2})}

Answered by BhumiArora31
4

THIS IS YOUR ANSWER

PLEASE MARK ME AS BRAINLIST

Attachments:
Similar questions