Chemistry, asked by any702, 5 months ago

do it fastr........ ....​

Attachments:

Answers

Answered by BrainlyEmpire
5

\underline{\sf\ \ \ Given:-\ \ \ }

Radii of circular ends of frustum of cone is 14cm and 8cm

Height = 8cm

\underline{\sf\ \ \ To \ Find :-\ \ \ }

CSA of frustum

TSA of frustum

Volume of frustum

\underline{\sf\ \ \ SOLUTION :-\ \ \ }

Curve surface Area of frustum

\large\underline{\boxed{\sf\ \ CSA\ of \ Frustum= \pi l(R+r)}}

\sf{We\ have}\begin{cases}\sf{R=14cm}\\ \sf{r=8cm}\\ \sf{l= \sqrt{h^2+(R-r)^2}}\end{cases}

:\implies\sf l= \sqrt{(8)^2+(14-8)^2}\ \ \ \ \big\lgroup h=8cm\big\rgroup\\ \\ \\ :\implies\sf l= \sqrt{64+(6)^2}\\ \\ \\ :\implies\sf l= \sqrt{64+36}\\ \\ \\ :\implies\sf l= \sqrt{100}\\ \\ \\ :\implies\sf Slant \ height (l)= {\boxed{\red{\sf 10cm}}}

Now CSA of frustum -

:\implies\sf CSA= \pi l(R+r)\\ \\ \\ :\implies\sf CSA= \dfrac{22}{7}\times 10\times (14+8)\\ \\ \\ :\implies\sf CSA= \dfrac{220\times 22}{7}\\ \\ \\ :\implies\sf CSA= \dfrac{4840}{7}\\ \\ \\ :\implies\sf\ CSA={\underline{\boxed{\purple{\sf 691\dfrac{3}{7}cm^2}}}}

\rule{260}{1.2}

Total Surface Area of frustum -

\underline{\boxed{\sf\ \ TSA\ of \ Frustum= \pi \Big[ R^2 +r^2+ l(R+r)\Big]}}

\sf{We\ have}\begin{cases}\sf{R=14cm}\\ \sf{r=8cm}\\ \sf{l= 10cm}\end{cases}

:\implies\sf TSA= \pi\bigg[(14)^2+(8)^2+10(14+8)\bigg]\\ \\ \\ :\implies\sf TSA= \pi \Big[196+64+220\Big]\\ \\ \\ :\implies\sf TSA= \dfrac{22}{7}\times 480\\ \\ \\ :\implies\sf TSA= \dfrac{10560}{7}\\ \\ \\ :\implies\sf TSA={\underline{\boxed{\red{\sf 1508\dfrac{4}{7}cm^2}}}}

\rule{260}{1.2}

Volume of frustum -

\underline{\boxed{\sf\ \ Volume\ of \ Frustum= \dfrac{\pi h}{3} \Big[ R^2 +r^2+Rr\Big]}}

\sf{We\ have}\begin{cases}\sf{R=14cm}\\ \sf{r=8cm}\\ \sf{h= 8cm}\end{cases}

:\implies\sf Volume= \dfrac{\pi h}{3}\times \Big[(14)^2+(8)^2+(14\times 8)\Big]\\ \\ \\ :\implies\sf Volume= \dfrac{22\times 8}{7\times 3}\times \Big[196+64+112\Big]\\ \\ \\ :\implies\sf Volume = \dfrac{176}{7\times \cancel{3}}\times \cancel{372}\\ \\ \\ :\implies\sf Volume = \dfrac{176\times 124}{7}\\ \\ \\ :\implies\sf Volume = \dfrac{21824}{7}\\ \\ \\ :\implies\sf Volume= {\underline{\boxed{\pink{\sf 3117\dfrac{5}{7}cm^3}}}}

Answered by ItzMayu
20

Answer:

\underline{\sf\ \ \ Given:-\ \ \ }

Radii of circular ends of frustum of cone is 14cm and 8cm

Height = 8cm

\underline{\sf\ \ \ To \ Find :-\ \ \ }

CSA of frustum

TSA of frustum

Volume of frustum

\underline{\sf\ \ \ SOLUTION :-\ \ \ }

Curve surface Area of frustum

\large\underline{\boxed{\sf\ \ CSA\ of \ Frustum= \pi l(R+r)}}

\sf{We\ have}\begin{cases}\sf{R=14cm}\\ \sf{r=8cm}\\ \sf{l= \sqrt{h^2+(R-r)^2}}\end{cases}

:\implies\sf l= \sqrt{(8)^2+(14-8)^2}\ \ \ \ \big\lgroup h=8cm\big\rgroup\\ \\ \\ :\implies\sf l= \sqrt{64+(6)^2}\\ \\ \\ :\implies\sf l= \sqrt{64+36}\\ \\ \\ :\implies\sf l= \sqrt{100}\\ \\ \\ :\implies\sf Slant \ height (l)= {\boxed{\red{\sf 10cm}}}

Now CSA of frustum -

:\implies\sf CSA= \pi l(R+r)\\ \\ \\ :\implies\sf CSA= \dfrac{22}{7}\times 10\times (14+8)\\ \\ \\ :\implies\sf CSA= \dfrac{220\times 22}{7}\\ \\ \\ :\implies\sf CSA= \dfrac{4840}{7}\\ \\ \\ :\implies\sf\ CSA={\underline{\boxed{\purple{\sf 691\dfrac{3}{7}cm^2}}}}

\rule{260}{1.2}

Total Surface Area of frustum -

\underline{\boxed{\sf\ \ TSA\ of \ Frustum= \pi \Big[ R^2 +r^2+ l(R+r)\Big]}}

\sf{We\ have}\begin{cases}\sf{R=14cm}\\ \sf{r=8cm}\\ \sf{l= 10cm}\end{cases}

:\implies\sf TSA= \pi\bigg[(14)^2+(8)^2+10(14+8)\bigg]\\ \\ \\ :\implies\sf TSA= \pi \Big[196+64+220\Big]\\ \\ \\ :\implies\sf TSA= \dfrac{22}{7}\times 480\\ \\ \\ :\implies\sf TSA= \dfrac{10560}{7}\\ \\ \\ :\implies\sf TSA={\underline{\boxed{\red{\sf 1508\dfrac{4}{7}cm^2}}}}

\rule{260}{1.2}

Volume of frustum -

\underline{\boxed{\sf\ \ Volume\ of \ Frustum= \dfrac{\pi h}{3} \Big[ R^2 +r^2+Rr\Big]}}

\sf{We\ have}\begin{cases}\sf{R=14cm}\\ \sf{r=8cm}\\ \sf{h= 8cm}\end{cases}

:\implies\sf Volume= \dfrac{\pi h}{3}\times \Big[(14)^2+(8)^2+(14\times 8)\Big]\\ \\ \\ :\implies\sf Volume= \dfrac{22\times 8}{7\times 3}\times \Big[196+64+112\Big]\\ \\ \\ :\implies\sf Volume = \dfrac{176}{7\times \cancel{3}}\times \cancel{372}\\ \\ \\ :\implies\sf Volume = \dfrac{176\times 124}{7}\\ \\ \\ :\implies\sf Volume = \dfrac{21824}{7}\\ \\ \\ :\implies\sf Volume= {\underline{\boxed{\pink{\sf 3117\dfrac{5}{7}cm^3}}}}

Similar questions