Physics, asked by disha5542, 3 months ago

do it fastt........ ​

Attachments:

Answers

Answered by BrainlyEmpire
51

Given:-

  • \sf{z_1\:and\:z_2} are two complex numbers.

-

To prove:-

  • \sf{\overline{\bigg({\dfrac{z_1}{z_2}\bigg)}}=\dfrac{\overline{z_1}}{\overline{z_2}}}

Solution:-

Let,

\sf{z_1=a_1+i\;b_1} and

\sf{z_2=a_2+i\;b_2}

  • So, Firstly calculating  \sf{\dfrac{z_1}{z_2}}

\longmapsto\sf{\dfrac{z_1}{z_2}=\dfrac{a_1+i\;b_1}{a_2+i\;b_2}}

\longmapsto\sf{\dfrac{z_1}{z_2}=\dfrac{a_1+i\;b_1}{a_2+i\;b_2}\times \dfrac{a_2-i\;b_2}{a_2-i\;b_2}}

\longmapsto\sf{\dfrac{z_1}{z_2}=\dfrac{a_1a_2+i\;b_1a_2-a_1\;i\;b_2-i^2\;b_1b_2}{{a_2}^2-i^2\;{b_2}^2}}

putting i² = -1

\longmapsto\sf{\dfrac{z_1}{z_2}=\dfrac{a_1a_2+i(b_1a_2-a_1b_2)-(-1)\;b_1b_2}{{a_2}^2-(-1)\;{b_2}^2}}

\longmapsto\sf{\dfrac{z_1}{z_2}=\dfrac{a_1a_2+i(b_1a_2-a_1b_2)+b_1b_2}{{a_2}^2+{b_2}^2}}

\longmapsto\sf{\dfrac{z_1}{z_2}=\bigg(\dfrac{a_1a_2+b_1b_2}{{a_2}^2+{b_2}^2}\bigg) +i\bigg(\dfrac{a_2b_1-a_1b_2}{{a_2}^2+{b_2}^2}\bigg)}

  • Therefore, conjugate of  \sf{\dfrac{z_1}{z_2}}  would be

\boxed{\longmapsto\sf{\overline{\bigg(\dfrac{z_1}{z_2}\bigg)}=\bigg(\dfrac{a_1a_2+b_1b_2}{{a_2}^2+{b_2}^2}\bigg) -i\bigg(\dfrac{a_2b_1-a_1b_2}{{a_2}^2+{b_2}^2}\bigg)\;\;\;....eqn(1)}}

  • Now, calculating  \sf{\dfrac{\;\overline{z_1}\;}{\overline{z_2}}}

\longmapsto\sf{\dfrac{\;\overline{z_1}\;}{\;\overline{z_2}\;}=\overline{z_1}\times\dfrac{1}{\overline{z_2}}}

\longmapsto\sf{\dfrac{\;\overline{z_1}\;}{\;\overline{z_2}\;}=(a_1-i\;b_1)\times\dfrac{1}{(a_2-i\;b_2)}}

\longmapsto\sf{\dfrac{\;\overline{z_1}\;}{\;\overline{z_2}\;}=(a_1-i\;b_1)\times\dfrac{1}{(a_2-i\;b_2)}\times\dfrac{a_2+i\;b_2}{a_2+i\;b_2}}

\longmapsto\sf{\dfrac{\;\overline{z_1}\;}{\;\overline{z_2}\;}=(a_1-i\;b_1)\times\dfrac{a_2+i\;b_2}{({a_2}^2+{b_2}^2)}}

\longmapsto\sf{\dfrac{\;\overline{z_1}\;}{\;\overline{z_2}\;}=\dfrac{a_1a_2+i\;a_1b_2-1\;a_2b_1-i^2\;b_1b_2}{({a_2}^2+{b_2}^2)}}

again putting i² = -1

we will get,

\boxed{\longmapsto\sf{\dfrac{\;\overline{z_1}\;}{\;\overline{z_2}\;}=\bigg(\dfrac{a_1a_2+b_1b_2}{{a_2}^2+{b_2}^2}\bigg)-i\bigg(\dfrac{a_2b_1-a_1b_2}{{a_2}^2+{b_2}^2}\bigg)}\;\;\;....eqn(2)}

From equation (1) and (2)

\bf{\overline{\bigg({\dfrac{z_1}{z_2}\bigg)}}=\dfrac{\overline{z_1}}{\overline{z_2}}}  is proved.

Answered by ItzMayu
8

Answer:

Given:-

\sf{z_1\:and\:z_2} are two complex numbers.

-

To prove:-

\sf{\overline{\bigg({\dfrac{z_1}{z_2}\bigg)}}=\dfrac{\overline{z_1}}{\overline{z_2}}}

Solution:-

Let,

\sf{z_1=a_1+i\;b_1} and

\sf{z_2=a_2+i\;b_2}

So, Firstly calculating  \sf{\dfrac{z_1}{z_2}}

\longmapsto\sf{\dfrac{z_1}{z_2}=\dfrac{a_1+i\;b_1}{a_2+i\;b_2}}

\longmapsto\sf{\dfrac{z_1}{z_2}=\dfrac{a_1+i\;b_1}{a_2+i\;b_2}\times \dfrac{a_2-i\;b_2}{a_2-i\;b_2}}

\longmapsto\sf{\dfrac{z_1}{z_2}=\dfrac{a_1a_2+i\;b_1a_2-a_1\;i\;b_2-i^2\;b_1b_2}{{a_2}^2-i^2\;{b_2}^2}}

putting i² = -1

\longmapsto\sf{\dfrac{z_1}{z_2}=\dfrac{a_1a_2+i(b_1a_2-a_1b_2)-(-1)\;b_1b_2}{{a_2}^2-(-1)\;{b_2}^2}}

\longmapsto\sf{\dfrac{z_1}{z_2}=\dfrac{a_1a_2+i(b_1a_2-a_1b_2)+b_1b_2}{{a_2}^2+{b_2}^2}}

\longmapsto\sf{\dfrac{z_1}{z_2}=\bigg(\dfrac{a_1a_2+b_1b_2}{{a_2}^2+{b_2}^2}\bigg) +i\bigg(\dfrac{a_2b_1-a_1b_2}{{a_2}^2+{b_2}^2}\bigg)}

Therefore, conjugate of  \sf{\dfrac{z_1}{z_2}}  would be

\boxed{\longmapsto\sf{\overline{\bigg(\dfrac{z_1}{z_2}\bigg)}=\bigg(\dfrac{a_1a_2+b_1b_2}{{a_2}^2+{b_2}^2}\bigg) -i\bigg(\dfrac{a_2b_1-a_1b_2}{{a_2}^2+{b_2}^2}\bigg)\;\;\;....eqn(1)}}

Now, calculating  \sf{\dfrac{\;\overline{z_1}\;}{\overline{z_2}}}

\longmapsto\sf{\dfrac{\;\overline{z_1}\;}{\;\overline{z_2}\;}=\overline{z_1}\times\dfrac{1}{\overline{z_2}}}

\longmapsto\sf{\dfrac{\;\overline{z_1}\;}{\;\overline{z_2}\;}=(a_1-i\;b_1)\times\dfrac{1}{(a_2-i\;b_2)}}

\longmapsto\sf{\dfrac{\;\overline{z_1}\;}{\;\overline{z_2}\;}=(a_1-i\;b_1)\times\dfrac{1}{(a_2-i\;b_2)}\times\dfrac{a_2+i\;b_2}{a_2+i\;b_2}}

\longmapsto\sf{\dfrac{\;\overline{z_1}\;}{\;\overline{z_2}\;}=(a_1-i\;b_1)\times\dfrac{a_2+i\;b_2}{({a_2}^2+{b_2}^2)}}

\longmapsto\sf{\dfrac{\;\overline{z_1}\;}{\;\overline{z_2}\;}=\dfrac{a_1a_2+i\;a_1b_2-1\;a_2b_1-i^2\;b_1b_2}{({a_2}^2+{b_2}^2)}}

again putting i² = -1

we will get,

\boxed{\longmapsto\sf{\dfrac{\;\overline{z_1}\;}{\;\overline{z_2}\;}=\bigg(\dfrac{a_1a_2+b_1b_2}{{a_2}^2+{b_2}^2}\bigg)-i\bigg(\dfrac{a_2b_1-a_1b_2}{{a_2}^2+{b_2}^2}\bigg)}\;\;\;....eqn(2)}

From equation (1) and (2)

\bf{\overline{\bigg({\dfrac{z_1}{z_2}\bigg)}}=\dfrac{\overline{z_1}}{\overline{z_2}}}  is proved.

Similar questions