Math, asked by mail2drsarita, 11 months ago

Do it for me the 2 one (ls-number system) do it in a proper manner air u can say step by step
Best answer will be marked as brainliest

Attachments:

Answers

Answered by jatinkumar99
1

Step-by-step explanation:

Hey mate

\huge\underline\bold{Solution}

x =  \sqrt{3}  - 2

 \frac{1}{x}  =  \frac{1}{  \sqrt{3} - 2 }

Now rationalise it

 \frac{1}{x}  =  \frac{1}{ \sqrt{3} - 2 }  \times  \frac{ \sqrt{3} + 2 }{ \sqrt{3} + 2}

 \frac{1}{x}  =  \frac{ \sqrt{3} + 2 }{  { \sqrt{3} }^{2} -  {2}^{2}  }

 \frac{1}{x}  =  \frac{ \sqrt{3} + 2 }{3 - 4}

 \frac{1}{x}  =  - ( \sqrt{3}  + 2)

To find

x -  \frac{1}{x}

put the value of x and 1/x

( \sqrt{3}  - 2) - ( -  \sqrt{3}  - 2)

 \sqrt{3}  - 2 +  \sqrt{3}  + 2

 \sqrt{3}  +  \sqrt{3}

2 \sqrt{3}

Now again to find

 {x}^{2}  +  \frac{1}{ {x}^{2} }

Put the value of x and 1/x

 { (\sqrt{3} - 2) }^{2}  +  { ( - \sqrt{3} - 2) }^{2}

(3 + 4 - 2 \times  \sqrt{3}  \times 2) + ( - (3 + 4 + 2 \times  \sqrt{3} \times 2))

3 + 4 - 4 \sqrt{3}  - 3 - 4 - 4 \sqrt{3}

 - 8 \sqrt{3}

Hope this will help u

And plzzz

\huge\underline\red{BRAINLIST}\huge\blue{PLEASE}

Similar questions