Math, asked by armaan3534, 3 months ago

do it it is urgent. ​

Attachments:

Answers

Answered by BrainlyEmpire
108

✩ GIVEN ✩

  • Tʜᴇ ᴀᴄᴄᴇʟᴇʀᴀᴛɪᴏɴ ᴏғ ᴀ ᴘᴀʀᴛɪᴄʟᴇ ɪs ɢɪᴠᴇɴ ʙʏ \bf\red{a\:=\:3t^2\:+\:2t\:+\:2\:} [ᴡʜᴇʀᴇ, t ɪs ᴛʜᴇ ᴛɪᴍᴇ ɪɴ sᴇᴄᴏɴᴅ ] .

  • \bf\red{V_1} = 2 m/s at t = 0 s .

✩ TO FIND ✩

  • \bf\red{V_2} = ? at t = 2 s .

✩ SOLUTION ✩

☯︎ ᴡᴇ ʜᴀᴠᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ, ᴛʜᴇ ʀᴀᴛᴇ ᴏғ ᴄʜᴀɴɢᴇ ᴏғ ᴠᴇʟᴏᴄɪᴛʏ ᴡɪᴛʜ ʀᴇsᴘᴇᴄᴛ ᴛᴏ ᴛɪᴍᴇ ɪs ᴋɴᴏᴡɴ ᴀs ᴀᴄᴄᴇʟᴇʀᴀᴛɪᴏɴ .

\bf\pink{\dfrac{dv}{dt}\:=\:a\:}

☯︎ Hᴇɴᴄᴇ, ᴛʜᴇ ɪɴᴛᴇɢʀᴀᴛɪᴏɴ ᴏғ ᴀᴄᴄᴇʟᴇʀᴀᴛɪᴏɴ-ᴛɪᴍᴇ ᴇǫᴜᴀᴛɪᴏɴ ɢɪᴠᴇs ᴛʜᴇ ᴠᴇʟᴏᴄɪᴛʏ .

\bf{:\implies\:\displaystyle\int\limits_{v_1}^{v_2}{dv}\:=\:\displaystyle\int\limits_{t_1}^{t_2}{a\:.\:dt}\:}

\rm{:\implies\:\displaystyle\int\limits_{2}^{v_2}{dv}\:=\:\displaystyle\int\limits_{0}^{2}{(3t^2\:+\:2t\:+\:2)\:.\:dt}\:}

\rm{:\implies\:\Big[{v}\Big]_{2}^{v_2}\:=\:\Big[t^3\:+\:t^2\:+\:2t\:\Big]_{0}^{2}\:}

  • \rm{:\implies\:v_2\:-\:2\:=\:2^3\:+\:2^2\:+\:2\times{2}\:}

  • \rm{:\implies\:v_2\:-\:2\:=\:8\:+\:4\:+\:4\:}

  • \rm{:\implies\:v_2\:-\:2\:=\:16\:}

  • \rm{:\implies\:v_2\:=\:16\:+\:2\:}

  • \bf\green{:\implies\:v_2\:=\:18\:m/s\:}

\huge\red\therefore Tʜᴇ ᴠᴇʟᴏᴄɪᴛʏ ᴀᴛ ᴛʜᴇ ᴇɴᴅ ᴏғ ᴛʜᴇ 2s ɪs "18m/s" .

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

__________•✩•____________________________________________________________________________

Answered by Anonymous
59

Answer:

✩ GIVEN ✩

Tʜᴇ ᴀᴄᴄᴇʟᴇʀᴀᴛɪᴏɴ ᴏғ ᴀ ᴘᴀʀᴛɪᴄʟᴇ ɪs ɢɪᴠᴇɴ ʙʏ \bf\red{a\:=\:3t^2\:+\:2t\:+\:2\:} [ᴡʜᴇʀᴇ, t ɪs ᴛʜᴇ ᴛɪᴍᴇ ɪɴ sᴇᴄᴏɴᴅ ] .

\bf\red{V_1} = 2 m/s at t = 0 s .

✩ TO FIND ✩

\bf\red{V_2} = ? at t = 2 s .

✩ SOLUTION ✩

☯︎ ᴡᴇ ʜᴀᴠᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ, ᴛʜᴇ ʀᴀᴛᴇ ᴏғ ᴄʜᴀɴɢᴇ ᴏғ ᴠᴇʟᴏᴄɪᴛʏ ᴡɪᴛʜ ʀᴇsᴘᴇᴄᴛ ᴛᴏ ᴛɪᴍᴇ ɪs ᴋɴᴏᴡɴ ᴀs ᴀᴄᴄᴇʟᴇʀᴀᴛɪᴏɴ .

\bf\pink{\dfrac{dv}{dt}\:=\:a\:}

☯︎ Hᴇɴᴄᴇ, ᴛʜᴇ ɪɴᴛᴇɢʀᴀᴛɪᴏɴ ᴏғ ᴀᴄᴄᴇʟᴇʀᴀᴛɪᴏɴ-ᴛɪᴍᴇ ᴇǫᴜᴀᴛɪᴏɴ ɢɪᴠᴇs ᴛʜᴇ ᴠᴇʟᴏᴄɪᴛʏ .

\bf{:\implies\:\displaystyle\int\limits_{v_1}^{v_2}{dv}\:=\:\displaystyle\int\limits_{t_1}^{t_2}{a\:.\:dt}\:}

\rm{:\implies\:\displaystyle\int\limits_{2}^{v_2}{dv}\:=\:\displaystyle\int\limits_{0}^{2}{(3t^2\:+\:2t\:+\:2)\:.\:dt}\:}

\rm{:\implies\:\Big[{v}\Big]_{2}^{v_2}\:=\:\Big[t^3\:+\:t^2\:+\:2t\:\Big]_{0}^{2}\:}

\rm{:\implies\:v_2\:-\:2\:=\:2^3\:+\:2^2\:+\:2\times{2}\:}

\rm{:\implies\:v_2\:-\:2\:=\:8\:+\:4\:+\:4\:}

\rm{:\implies\:v_2\:-\:2\:=\:16\:}

\rm{:\implies\:v_2\:=\:16\:+\:2\:}

\bf\green{:\implies\:v_2\:=\:18\:m/s\:}

\huge\red\therefore Tʜᴇ ᴠᴇʟᴏᴄɪᴛʏ ᴀᴛ ᴛʜᴇ ᴇɴᴅ ᴏғ ᴛʜᴇ 2s ɪs "18m/s" .

Similar questions