Math, asked by jeevankishorbabu9985, 13 days ago

do it
  \bold \wr \implies { \int \: 1 \div x(x + 1)(x + 2)}

Answers

Answered by sandy1816
3

\huge\mathcal\colorbox{lavender}{{\color{b}{ꪗour Answer★࿐}}}

 \int \:  \frac{1}{x(x + 1)(x + 2)} dx \\  \frac{1}{x(x + 1)(x + 2)}  =   \frac{A}{x}  +  \frac{B}{x + 1}  +  \frac{C}{x + 2}  \\ 1 = A(x + 1)(x + 2) + Bx(x + 2) + Cx(x + 1)...(i) \\ put \:  \: x = 0 \:  \: in \:  \: eqn \:  \: (i) \\ 1 = 2A\implies A =  \frac{1}{2}  \\ put \:  \: x =  - 1 \\ 1 = B( - 1)( - 1 + 2) \\ 1 =  - B \\ B =  - 1 \\ put \:  \: x =  - 2 \\ 1 = C( - 2)( - 2 + 1) \\ C =  \frac{1}{2}  \\  \frac{1}{x(x + 1)(x + 2)}  =  \frac{ \frac{1}{2} }{x}  +  \frac{ - 1}{x + 1}  +  \frac{ \frac{1}{2} }{x + 2}  \\  \int  \frac{1}{x(x + 1)(x + 2)}  =  \frac{1}{2}  \int  \frac{1}{x} dx -  \int  \frac{1}{x + 1} dx  \:  +  \int \:  \frac{1}{x + 2} dx \\  =  \frac{1}{2} log |x|  - log |x + 1|  + log |x + 2|  + c

Similar questions