Physics, asked by mrindia70, 5 months ago

do it with explanation​

Attachments:

Answers

Answered by BrainlyEmpire
1

(i) Moment of Inertia of a Thin Uniform Spherical Shell

Consider a thin uniform spherical shell of radius \sf{R} and mass \sf{M} (Figure 1). Consider an elemental ring of radius \sf{r} and mass \sf{dM} whose center is at a distance \sf{x} from the center of the shell.

Here \sf{dl} is edge width of ring which subtends an angle \sf{d\theta} at center of the shell. So,

\sf{\longrightarrow dl=R\ d\theta}

From the triangle,

\sf{\longrightarrow r=R\sin\theta}

The surface area of the ring,

\sf{\longrightarrow dA=2\pi r\ dl}

\sf{\longrightarrow dA=2\pi R^2\sin\theta\ d\theta}

Since the shell is uniform,

\sf{\longrightarrow\dfrac{M}{A}=\dfrac{dM}{dA}}

\sf{\longrightarrow dM=\dfrac{M}{4\pi R^2}\cdot2\pi R^2\sin\theta\ d\theta}

\sf{\longrightarrow dM=\dfrac{1}{2}\,M\sin\theta\ d\theta}

The moment of inertia of the ring about an axis passing through its center and perpendicular to the plane is,

\sf{\longrightarrow dI=dM\cdot r^2}

\sf{\longrightarrow dI=\dfrac{1}{2}\,M\sin\theta\ d\theta\,(R\sin\theta)^2}

\sf{\longrightarrow dI=\dfrac{1}{2}\,MR^2\sin^3\theta\ d\theta}

Then the moment of inertia of the whole shell is,

\displaystyle\sf{\longrightarrow I=\dfrac{1}{2}\,MR^2\int\limits_0^{\pi}\sin^3\theta\ d\theta}

Solving the integral,

\displaystyle\sf{\longrightarrow\int\limits_0^{\pi}\sin^3\theta\ d\theta=\int\limits_0^{\pi}\sin^2\theta\cdot\sin\theta\ d\theta}

\displaystyle\sf{\longrightarrow\int\limits_0^{\pi}\sin^3\theta\ d\theta=-\int\limits_0^{\pi}\left(1-\cos^2\theta\right)\cdot-\sin\theta\ d\theta}

Take \sf{u=\cos\theta.} Then,

\displaystyle\sf{\longrightarrow\int\limits_0^{\pi}\sin^3\theta\ d\theta=-\int\limits_1^{-1}\left(1-u^2\right)\ du}

\displaystyle\sf{\longrightarrow\int\limits_0^{\pi}\sin^3\theta\ d\theta=\dfrac{4}{3}}

Hence,

\displaystyle\sf{\longrightarrow I=\dfrac{1}{2}\,MR^2\cdot\dfrac{4}{3}}

\displaystyle\sf{\longrightarrow\underline{\underline{I=\dfrac{2}{3}\,MR^2}}}

(ii) Moment of Inertia of a Solid Uniform Sphere

Consider a solid uniform sphere of radius \sf{R} and mass \sf{M} (Figure 2). Consider an elemental disc of radius \sf{r} and mass \sf{dM} whose center is at a distance \sf{x} from the center of the shell.

From the triangle,

\sf{\longrightarrow x=R\cos\theta}

\sf{\longrightarrow dx=-R\sin\theta\ d\theta}

and,

\sf{\longrightarrow r=R\sin\theta}

Volume of disc,

\sf{\longrightarrow dV=\pi r^2\ dx}

\sf{\longrightarrow dV=-\pi R^3\sin^3\theta\ d\theta}

Since the sphere is uniform,

\sf{\longrightarrow\dfrac{M}{V}=\dfrac{dM}{dV}}

\sf{\longrightarrow dM=\dfrac{M}{\dfrac{4}{3}\pi R^3}\cdot -\pi R^3\sin^3\theta\ d\theta}

\sf{\longrightarrow dM=-\dfrac{3}{4}\,M\sin^3\theta\ d\theta}

Moment of inertia of the disc about an axis passing through its center and perpendicular to the plane is,

\displaystyle\sf{\longrightarrow dI=\dfrac{1}{2}\,dM\cdot r^2}

\sf{\longrightarrow dI=-\dfrac{3}{8}\,M\sin^3\theta\ d\theta\cdot(R\sin\theta)^2}

\sf{\longrightarrow dI=-\dfrac{3}{8}\,MR^2\sin^5\theta\ d\theta}

Then moment of inertia of the whole sphere will be,

\displaystyle\sf{\longrightarrow I=\int\limits_{\pi}^0-\dfrac{3}{8}\,MR^2\sin^5\theta\ d\theta }

\displaystyle\sf{\longrightarrow I=\dfrac{3}{8}\,MR^2\int\limits_0^{\pi}\sin^5\theta\ d\theta }

Solving the integral,

\displaystyle\sf{\longrightarrow \int\limits_0^{\pi}\sin^5\theta\ d\theta=\int\limits_0^{\pi}\sin^4\theta\cdot\sin\theta\ d\theta}

\displaystyle\sf{\longrightarrow \int\limits_0^{\pi}\sin^5\theta\ d\theta=-\int\limits_0^{\pi}(1-\cos^2\theta)^2\cdot-\sin\theta\ d\theta}

Take \sf{u=\cos\theta.} Then,

\displaystyle\sf{\longrightarrow \int\limits_0^{\pi}\sin^5\theta\ d\theta=-\int\limits_1^{-1}\left(1-u^2\right)^2\ du}

\displaystyle\sf{\longrightarrow \int\limits_0^{\pi}\sin^5\theta\ d\theta=\dfrac{16}{15}}

Hence,

\displaystyle\sf{\longrightarrow I=\dfrac{3}{8}\,MR^2\cdot\dfrac{16}{15}}

\displaystyle\sf{\longrightarrow\underline{\underline{I=\dfrac{2}{5}\,MR^2}}}

Attachments:
Answered by Anonymous
0

Answer:

(i) Moment of Inertia of a Thin Uniform Spherical Shell

Consider a thin uniform spherical shell of radius \sf{R}R and mass \sf{M}M (Figure 1). Consider an elemental ring of radius \sf{r}r and mass \sf{dM}dM whose center is at a distance \sf{x}x from the center of the shell.

Here \sf{dl}dl is edge width of ring which subtends an angle \sf{d\theta}dθ at center of the shell. So,

\sf{\longrightarrow dl=R\ d\theta}⟶dl=R dθ

From the triangle,

\sf{\longrightarrow r=R\sin\theta}⟶r=Rsinθ

The surface area of the ring,

\sf{\longrightarrow dA=2\pi r\ dl}⟶dA=2πr dl

\sf{\longrightarrow dA=2\pi R^2\sin\theta\ d\theta}⟶dA=2πR

2

sinθ dθ

Since the shell is uniform,

\sf{\longrightarrow\dfrac{M}{A}=\dfrac{dM}{dA}}⟶

A

M

=

dA

dM

\sf{\longrightarrow dM=\dfrac{M}{4\pi R^2}\cdot2\pi R^2\sin\theta\ d\theta}⟶dM=

4πR

2

M

⋅2πR

2

sinθ dθ

\sf{\longrightarrow dM=\dfrac{1}{2}\,M\sin\theta\ d\theta}⟶dM=

2

1

Msinθ dθ

The moment of inertia of the ring about an axis passing through its center and perpendicular to the plane is,

\sf{\longrightarrow dI=dM\cdot r^2}⟶dI=dM⋅r

2

\sf{\longrightarrow dI=\dfrac{1}{2}\,M\sin\theta\ d\theta\,(R\sin\theta)^2}⟶dI=

2

1

Msinθ dθ(Rsinθ)

2

\sf{\longrightarrow dI=\dfrac{1}{2}\,MR^2\sin^3\theta\ d\theta}⟶dI=

2

1

MR

2

sin

3

θ dθ

Then the moment of inertia of the whole shell is,

Explanation:

(i) Moment of Inertia of a Thin Uniform Spherical Shell</p><p></p><p>Consider a thin uniform spherical shell of radius \sf{R}R and mass \sf{M}M (Figure 1). Consider an elemental ring of radius \sf{r}r and mass \sf{dM}dM whose center is at a distance \sf{x}x from the center of the shell.</p><p></p><p>Here \sf{dl}dl is edge width of ring which subtends an angle \sf{d\theta}dθ at center of the shell. So,</p><p></p><p>\sf{\longrightarrow dl=R\ d\theta}⟶dl=R dθ</p><p></p><p>From the triangle,</p><p></p><p>\sf{\longrightarrow r=R\sin\theta}⟶r=Rsinθ</p><p></p><p>The surface area of the ring,</p><p></p><p>\sf{\longrightarrow dA=2\pi r\ dl}⟶dA=2πr dl</p><p></p><p>\sf{\longrightarrow dA=2\pi R^2\sin\theta\ d\theta}⟶dA=2πR2sinθ dθ</p><p></p><p>Since the shell is uniform,</p><p></p><p>\sf{\longrightarrow\dfrac{M}{A}=\dfrac{dM}{dA}}⟶AM=dAdM</p><p></p><p>\sf{\longrightarrow dM=\dfrac{M}{4\pi R^2}\cdot2\pi R^2\sin\theta\ d\theta}⟶dM=4πR2M⋅2πR2sinθ dθ</p><p></p><p>\sf{\longrightarrow dM=\dfrac{1}{2}\,M\sin\theta\ d\theta}⟶dM=21Msinθ dθ</p><p></p><p>The moment of inertia of the ring about an axis passing through its center and perpendicular to the plane is,</p><p></p><p>\sf{\longrightarrow dI=dM\cdot r^2}⟶dI=dM⋅r2</p><p></p><p>\sf{\longrightarrow dI=\dfrac{1}{2}\,M\sin\theta\ d\theta\,(R\sin\theta)^2}⟶dI=21Msinθ dθ(Rsinθ)2</p><p></p><p>\sf{\longrightarrow dI=\dfrac{1}{2}\,MR^2\sin^3\theta\ d\theta}⟶dI=21MR2sin3θ dθ</p><p></p><p>Then the moment of inertia of the whole shell is,</p><p></p><p>

Similar questions