Math, asked by iramfairy, 1 month ago

Do question no 46
Explain also​

Attachments:

Answers

Answered by sanchghosh9
3

Answer:

x^3

Step-by-step explanation:

{(x^a)^b}^(1/ab) {(x^b)^c}^(1/bc) {(x^c)^a}^(1/ca)

x^1 x^1 x^1

x^(1+1+1)

x^3

Answered by anindyaadhikari13
15

\texttt{\textsf{\large{\underline{Solution}:}}}

We have to simplify the expression.

Given:

 \sf = \bigg\{ \big( {x}^{a} \big)^{b} \bigg\}^{ \dfrac{1}{ab} } \cdot\bigg\{ \big( {x}^{b} \big)^{c} \bigg\}^{ \dfrac{1}{bc} } \cdot\bigg\{ \big( {x}^{c} \big)^{a} \bigg\}^{ \dfrac{1}{ca} }

As we know that:

 \sf \implies {( {x}^{a} )}^{b} =  {x}^{ab}

We get:

 \sf = \bigg\{ {x}^{ab} \bigg\}^{ \dfrac{1}{ab} } \cdot\bigg\{ {x}^{bc}\bigg\}^{ \dfrac{1}{bc} } \cdot\bigg\{{x}^{ac}\bigg\}^{ \dfrac{1}{ca} }

Again, using same formula, we get,

 \sf =  {x}^{1} \cdot {x}^{1} \cdot {x}^{1}

As we know that:

 \sf \implies {x}^{a} \times  {x}^{b} =  {x}^{a + b}

We get:

 \sf =  {x}^{1 + 1 + 1}

 \sf =  {x}^{3}

Which is our required answer.

\texttt{\textsf{\large{\underline{Answer}:}}}

  • Result = x³.

\texttt{\textsf{\large{\underline{More To Know}:}}}

If a, b are positive real numbers and m, n are rational numbers, then the following results hold -

 \sf 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \sf 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\sf 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \sf4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \sf5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \sf6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \sf7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \sf8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1


anindyaadhikari13: Thanks for the brainliest ^_^
amitkumar44481: Great :-)
anindyaadhikari13: Thank u!
Similar questions