Math, asked by Anonymous, 4 days ago

Do Solve it quickly! ​

Attachments:

Answers

Answered by βαbγGυrl
6

Answer:

int(1)/(1+sinx)dx=int(1)/((1+sinx))*((1-sinx))/((1-sinx))dx

=int(1-sinx)/(1-sin^(2)x)dx

=int(1-sinx)/(cos^(2)x)dx

=int(1)/(cos^(2)x)dx-int(sinx)/(cos^(2)x)dx

=int sec^(2)x dx-int tan x sec x dx

=tan x- sec x +C

\pink{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}

Answered by saichavan
12

Answer:

 \displaystyle \:  \int_{-\frac{\pi}{4}}^{ \frac{\pi}{4} } \frac{1}{1 +  \sin(x) } dx

=\int_{ -  \frac{\pi}{4} }^{ \frac{ \pi}{4} }( \frac{1}{1 +  \sin(x) }  \times  \frac{1 -  \sin(x) }{1 - \sin(x)}dx

 \displaystyle =  \int_{ -  \frac{\pi}{4}}^{ \frac{\pi}{4} } \frac{ 1 -  \sin(x) }{1 -  \sin^{2} (x)} dx

=  \int_{ -  \frac{ \pi}{4} }^{ \frac{\pi}{4}} \frac{1}{ \cos {}^{2} (x) }  dx -  \int_{ -  \frac{ \pi}{4} }^{ \frac{\pi}{4} }{ \frac{ \sin(x) }{ \cos {}^{2} (x) } }dx

 \int_{ -  \frac{\pi}{4} }^{ \frac{\pi}{4} } \sec {}^{2} x \: dx -  \int_{  -   \frac{\pi}{4}}^{ \frac{\pi}{4} } {  \tan(x)   \sec \: x} \: dx

 =  ((\tan \frac{\pi}{4}  -  \sec  \frac{\pi}{4} )) - (( \tan( -  \frac{ \pi}{4} )  -  \sec(  - \frac{\pi}{4} ))

 = (1 -  \sqrt{2} ) - ( - 1 -  \sqrt{2} )

 = 1 -   \cancel{\sqrt{2}}  + 1 +   \cancel{\sqrt{2} }

 = 2


Aryan0123: Good answer !
Similar questions