Math, asked by monjyotiboro, 1 month ago

Do the derivative of:

x^-x

Answers

Answered by ridhya77677
3

Answer:

let \: y \:  =  {x}^{ - x}  \\ taking \: log \: both \: sides, \: we \: get, \\  log(y)  =  log( {x}^{ - x} )  \\  =  >  log(y)  =  - x log(x)  \\  now \: differentiating \: both \: sides \: w.r.to \: x ,\\  \frac{d}{dx}  log(y)  =  \frac{d}{dx} ( - x log(x))  \\  =  >  \frac{1}{y}  \frac{dy}{dx}  =  log(x) \times  \frac{d}{dx} ( - x)  + ( - x) \times  \frac{d}{dx}   log(x)  \\   =  >  \frac{1}{y}  \frac{dy}{dx}  =  log(x) \times  ( - 1)  + ( - x) \times  \frac{1}{x}  \\  =  >  \frac{1}{y}  \frac{dy}{dx}  =  -  log(x)  -  1 \\  =  >  \frac{1}{y} \frac{dy}{dx}  =  - (1 +  logx)  \\  =  >  \frac{dy}{dx}  = -y (1 +  logx)  \\ putting \: the \: value \: of \: y \: in \: the \: above \: eqn: \\   =  >  \frac{dy}{dx}  =  -  {x}^{ - x} (1 +  logx)

hence, this is the req derivative.

_________________________________________

Formula used :-

☆ log( {x}^{y} )  = y log(x)  \\ ☆ \frac{d}{dx}  log(x)  =  \frac{1}{x}  \\  \:  \:  \:  \:  \:  \:☆  \frac{d}{dx} (uv) = v \times  \frac{du}{dx}  + u \times  \frac{dv}{dx}

Similar questions