Math, asked by sli02, 1 year ago

Do the following :-
2 \sqrt{3}  +  \sqrt{27}
 \sqrt{45}  - 3 \sqrt{20}  + 4 \sqrt{5}

Answers

Answered by Anonymous
9

\huge{\bold{SOLUTION:-}}<b>

Addition and subtraction of two surds is possible if they are similar i.e. the radicand and the order of radicand are same and the integral part of the surds can be different

1) 2 \sqrt{3}  +  \sqrt{27}

2 \sqrt{3}  + 3 \sqrt{3}

(2 + 3) \sqrt{3}

\boxed{5 \sqrt{3}}

2) \sqrt{45}  - 3 \sqrt{20}  + 4 \sqrt{5}

3 \sqrt{5}  - 3 \times 2 \sqrt{5}  + 4 \sqrt{5}

3 \sqrt{5}  - 6 \sqrt{5}  + 4 \sqrt{5}

\boxed{\sqrt{5}}


sli02: thankyou somuch
sli02: plz do my other sums also
Anonymous: sure @sli02
Answered by deepsen640
7

1.)

 \large{2 \sqrt{3}  +  \sqrt{27} }

 \large{2 \sqrt{3}  +3  \sqrt{3} }

  = \large{ \boxed{5 \sqrt{3} }}

2.)

 \large{ \sqrt{45}  - 3 \sqrt{20}  + 4 \sqrt{5} }

 \large{ 3\sqrt{5}  - 6 \sqrt{5}  + 4 \sqrt{5} }

 \large{7 \sqrt{5} - 6 \sqrt{5}  }

  = \large{ \boxed{ \sqrt{5} }}

THANKS

Similar questions