Physics, asked by meghakatiyar1, 11 months ago

do the question of attachment..​

Attachments:

Answers

Answered by TRISHNADEVI
13

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: QUESTION \:  \: } \mid}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{If   \:  \: the \:  \:   n  \:  \: number \:  \:   of \:  \:  little \:  \:  droplets  \:  \: of  \:  \: water \:  \:  } \\  \sf{of  \:  \: surface \:  \:  tension  \:  \: S  \:  \: all  \:  \: of \:  \:  the \:  \:  same \:  \:  radius  \:  \: r \:  cm  \:  \: } \\  \sf{combine \:  \:  to  \:  \: form  \:  \: a \:  \:  single  \:  \: drop \:  \:  of  \:  \:  radius \:  \:  R \:  cm,} \\  \sf{ show \:  \:  that,  \: the \:  \:  rise \:  \:  in \:  \:  temperature \:  \:  of \:  \:  the  \:  \: water \:  \:} \\  \sf{  is   \:  \: given \:  \:  by \:  \:  \triangle \theta  =  \frac{3T}{J} ( \frac{1}{r}  -  \frac{1}{R} )}

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \: Suppose, \: }} \\  \\   \:  \: \text{ \red{n} be the number of little droplets.} \\  \text{As, volume will remain constant, so,} \\ \\   \therefore \:  \text{Volume of n little droplets = Volume} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \text{ of single drop} \\  \\  \tt{\implies n \times \frac{3}{4} \pi \: r{}^{3} = \frac{3}{4} \pi \: R{}^{3}} \\  \\  \tt{\implies  \:  \pink{n \times r{}^{3} = R{}^{3}}}

 \underline{ \mathfrak{ \: And ,  \: }}\\  \\  \bold{Decrease \:  \:  in  \:  \: surface  \:  \: area = n  \times  4 \pi \: r{}^{2} - 4\pi \: R{}^{2} }\\  \\   \bold{ \implies \triangle \: A = 4\pi(nr {}^{2}  - R {}^{2} )} \\  \\    \bold{\implies \triangle \: A = 4\pi( \frac{nr {}^{3} }{r}  -  R {}^{2} )} \\  \\  \bold{\implies \triangle \: A = 4\pi( \frac{R {}^{3} }{r}  - R {}^{2} ) }\\  \\  \bold{\implies  \pink{\triangle \: A = 4\pi \: R {}^{3} ( \frac{1}{r}  -  \frac{1}{R} )}}

 \underline{ \mathfrak{ \: Again,  \: }}\\  \\   \:  \:  \:  \: \tt{Energy  \: evolved, W = T  \times  decrease \:  \:  in  \:  \: } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{surface \:  \:  area }\\  \\ \tt{ \implies \: W = T \times  4\pi \: R {}^{3} ( \frac{1}{r}  -  \frac{1}{R} )} \\  \\  \tt{ \implies \:  \pink{W =  4\pi \: R {}^{3} T ( \frac{1}{r}  -  \frac{1}{R} )}}

 \bold{ \therefore \: Heat  \:  \: produced, Q =  \frac{W}{J}  }\\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ = \frac{4\pi \: R {}^{3} T ( \frac{1}{r}  -  \frac{1}{R} )}{J}  }\\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{= \frac{4\pi \: R {}^{3} T }{J} ( \frac{1}{r}  -  \frac{1}{R} )} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{ \therefore \:  \pink{Q= \frac{4\pi \: R {}^{3} T }{J} ( \frac{1}{r}  -  \frac{1}{R} )} }

 \text{But,} \\   \\  \:  \:  \:  \:  \boxed{ \tt{ \pink{Q= MS \:  \triangle \theta}}} \\  \\ \text{where  \red{M} is the mass of big drop  \red{S} is the specific } \\  \text{heat of water and \: }  \red{\triangle \theta} \:  \:  \text{is the rise in temperature.}

 \tt{ \therefore \:   Volume  \:  \: of \:   \: big \:  \:  drop \times Density  \:  \: of  \:  \: water \times} \\  \tt{ Sp. heat \:  \:  of \:  \:  water \times \triangle \theta = \frac{4\pi \: R {}^{3} T }{J} ( \frac{1}{r}  -  \frac{1}{R} )} \\  \\   \tt{\implies \:  \frac{4}{3} \pi \: R {}^{3}  \times 1 \times 1 \times \triangle \theta = \frac{4\pi \: R {}^{3} T }{J} ( \frac{1}{r}  -  \frac{1}{R} )} \\  \\  \tt{ \implies \: \frac{4}{3} \pi \: R {}^{3}  \times  \triangle \theta = \frac{4\pi \: R {}^{3} T }{J} ( \frac{1}{r}  -  \frac{1}{R} )} \\  \\   \tt{\implies \:  \triangle \theta =\frac{ \cancel{4} \:  \cancel{\pi \:  R{}^{3} } \: T }{J} ( \frac{1}{r}  -  \frac{1}{R} ) \times  \frac{3}{ \cancel{4} }  \times \frac{1}{\cancel{ \pi \: R {}^{3}}} } \\  \\   \tt{\implies \: \pink{ \triangle \theta  =  \frac{3T}{J} ( \frac{1}{r}  -  \frac{1}{R} ) }}

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \bold{ \:  \: Hence,  showed. \:  \: }}

Similar questions