do this please
Answers
EXPLANATION.
⇒ ∫cot³x dx.
As we know that,
We can write equation as,
⇒ ∫[cot(x).cot²(x)]dx.
As we know that,
Formula of :
⇒ 1 + cot²x = cosec²x.
⇒ cot²x = cosec²x - 1.
Using this formula in equation, we get.
⇒ ∫(cosec²x - 1).cot(x)dx.
⇒ ∫(cosec²x.cot(x)dx - ∫(cot(x)dx.
⇒ ∫[cos(x)/sin³(x)dx - ∫cot(x)dx.
From the first integration, we get.
⇒ ∫[cos(x)/sin³x]dx.
By using substitution method, we get.
Let we assume that,
⇒ sin(x) = t.
Differentiate w.r.t x, we get.
⇒ cos(x)dx = dt.
Put the values in the equation, we get.
⇒ ∫dt/t³ = -1/2t².
Put the value of t = sin(x) in equation, we get.
⇒ -1/2sin²x.
⇒ ∫[cos(x)/sin³(x)dx - ∫cot(x)dx.
⇒ -1/2sin²x - ㏒(sin x) + C.
MORE INFORMATION.
Standard integrals.
(1) = ∫sin x dx = - cos x + c.
(2) = ∫cos x dx = sin x + c.
(3) = ∫tan x dx = ㏒(sec x) + c = -㏒(cos x) + c.
(4) = ∫cot x dx = ㏒(sin x) + c.
(5) = ∫sec x dx = ㏒(sec x + tan x) + c = -㏒(sec x - tan x) + c = ㏒ tan(π/4 + x/2) + c.
(6) = ∫cosec x dx = -㏒(cosec x + cot x) + c = ㏒(cosec x - cot x) + c = ㏒ tan(x/2) + c.
(7) = ∫sec x. tan x dx = sec x + c.
(8) = ∫cosec x. cot x dx = - cosec x + c.
(9) = ∫sec²x dx = tan x + c.
(10) = ∫cosec²x dx = - cot x + c.
Answer :
Explanation :
★Expand the above Equation :
★ Using the sum Rule :
★ Using integration by substitution on
Let u = sin x , du = cos x dx .
★Using u and du in above step !!
★By using Power Rule :
★ Substitute u = sin x
★ Now rewrite the integral with completed substitution.
★ Use Trigonometric integration .
cot x is In (sin x)
★ Add the constant :