Math, asked by smart990brain, 4 months ago

do this question with full solution​

Attachments:

Answers

Answered by shahidkhar07
2

perimeter of semicircular protactor=(2×22/7×7/2)÷2

perimeter of semicircular protactor=22/2

perimeter of semicircular protactor=11cm

area of semicircular protactor=22/7×(7/2)^2

area of semicircular protactor=22/7×49/4

area of semicircular protactor=77/2cm

Answered by ApprenticeIAS
4

 \boxed{ \boxed{ \rm{Perimeter \:  of \:  semi \:  circular  \: protractor \:  =  \pi \: r + 2r}}}

  \rm\red{Given}

 \rm{Radius \:  (r)  \: =  \: \dfrac{7}{2} \: cm}

 \rm{Perimeter  \: (S) \:  =  \: r(\pi + 2)}

 \rm{S = \dfrac{7}{2} \bigg( \dfrac{22}{7} +2 \bigg)}

 \rm{S = \dfrac{7}{2} \bigg( \dfrac{36}{7} \bigg)}

 \rm{S  = 18} \: cm

 \boxed{ \boxed{ \sf{\therefore \:  Perimeter = 18}}}

 \boxed{ \boxed{ \rm{Area \:  of  \: Semi  \: circular  \: protractor \:  (A) \:  =  \:  \dfrac{\pi r^2}{2}}}}

 \rm{A = \dfrac{\dfrac{22}{7} \bigg( \dfrac{7}{2} \bigg)^{2}}{2}}

 \rm{A = \dfrac{22}{7}  \times  \dfrac{49}{4} \times  \dfrac{1}{2}  }

 \rm{A = \dfrac{77}{4} } \:  {cm}^{2}

  \boxed{ \boxed{\rm{Area = \dfrac{77}{4} \:  cm^2}}}

Similar questions