Math, asked by ashleshasarma4206, 2 months ago

do we write characteristic of log 2^(-64) as bar20 or -20? Which is suitable?​

Answers

Answered by AbhinavRocks10
17

❏\sf log_{2\sqrt{2}}

Step-by-step explanation:

Let \sf x = log_{2\sqrt{2}}

\sf❏\implies x = log_{2\times 2^{\frac{1}{2}}} 2^{6}

\sf❏\implies x = log_{2^{\frac{(2+1)}{2}}}2^{6}

\sf❏\implies x = log_{2^{\frac{(3)}{2}}} 2^{6}

\sf\implies x = \frac{6}{\frac{3}{2}}\times log_{2}

  • we know the logarithmic law:

\sf\boxed{log_{a^{n}}a^{m} = \frac{m}{n}}

\sf\implies x = 6 \times \frac{2}{3}

\sf\implies x = 4

\begin{gathered}\begin{gathered}\small\boxed{ \begin{array}{cc}\large\sf\dag \: {\underline{☆More \: Formulae☆}} \\ \\ \bigstar \: \sf{Gain = S.P – C.P} \\ \\ \bigstar \:\sf{Loss = C.P – S.P} \\ \\ \bigstar \: \sf{S.P = \dfrac{100+Gain\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100+Gain\%} \times S.P} \\ \\\bigstar \: \sf{ S.P = \dfrac{100-loss\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100-loss\%} \times S.P}\end{array}}\end{gathered}\end{gathered}

Similar questions