Does joules law involve conservation of energy?
Answers
Answer:
Joule’s law, in electricity, mathematical description of the rate at which resistance in a circuit converts electric energy into heat energy. The English physicist James Prescott Joule discovered in 1840 that the amount of heat per second that develops in a wire carrying a current is proportional to the electrical resistance of the wire and the square of the current. He determined that the heat evolved per second is equivalent to the electric power absorbed, or the power loss.
Answer:
Joule’s law, in electricity, mathematical description of the rate at which resistance in a circuit converts electric energy into heat energy. The English physicist James Prescott Joule discovered in 1840 that the amount of heat per second that develops in a wire carrying a current is proportional to the electrical resistance of the wire and the square of the current. He determined that the heat evolved per second is equivalent to the electric power absorbed, or the power loss.
Answer:
Joule’s law, in electricity, mathematical description of the rate at which resistance in a circuit converts electric energy into heat energy. The English physicist James Prescott Joule discovered in 1840 that the amount of heat per second that develops in a wire carrying a current is proportional to the electrical resistance of the wire and the square of the current. He determined that the heat evolved per second is equivalent to the electric power absorbed, or the power loss.
Answer:
Joule’s law, in electricity, mathematical description of the rate at which resistance in a circuit converts electric energy into heat energy. The English physicist James Prescott Joule discovered in 1840 that the amount of heat per second that develops in a wire carrying a current is proportional to the electrical resistance of the wire and the square of the current. He determined that the heat evolved per second is equivalent to the electric power absorbed, or the power loss.
Answer:
Joule’s law, in electricity, mathematical description of the rate at which resistance in a circuit converts electric energy into heat energy. The English physicist James Prescott Joule discovered in 1840 that the amount of heat per second that develops in a wire carrying a current is proportional to the electrical resistance of the wire and the square of the current. He determined that the heat evolved per second is equivalent to the electric power absorbed, or the power loss.
Answer:
Joule’s law, in electricity, mathematical description of the rate at which resistance in a circuit converts electric energy into heat energy. The English physicist James Prescott Joule discovered in 1840 that the amount of heat per second that develops in a wire carrying a current is proportional to the electrical resistance of the wire and the square of the current. He determined that the heat evolved per second is equivalent to the electric power absorbed, or the power loss.
Answer:
Joule’s law, in electricity, mathematical description of the rate at which resistance in a circuit converts electric energy into heat energy. The English physicist James Prescott Joule discovered in 1840 that the amount of heat per second that develops in a wire carrying a current is proportional to the electrical resistance of the wire and the square of the current. He determined that the heat evolved per second is equivalent to the electric power absorbed, or the power loss.
Answer:
Joule’s law, in electricity, mathematical description of the rate at which resistance in a circuit converts electric energy into heat energy. The English physicist James Prescott Joule discovered in 1840 that the amount of heat per second that develops in a wire carrying a current is proportional to the electrical resistance of the wire and the square of the current. He determined that the heat evolved per second is equivalent to the electric power absorbed, or the power loss.
Answer:
Joule’s law, in electricity, mathematical description of the rate at which resistance in a circuit converts electric energy into heat energy. The English physicist James Prescott Joule discovered in 1840 that the amount of heat per second that develops in a wire carrying a current is proportional to the electrical resistance of the wire and the square of the current. He determined that the heat evolved per second is equivalent to the electric power absorbed, or the power loss.
Answer:
Joule’s law, in electricity, mathematical description of the rate at which resistance in a circuit converts electric energy into heat energy. The English physicist James Prescott Joule discovered in 1840 that the amount of heat per second that develops in a wire carrying a current is proportional to the electrical resistance of the wire and the square of the current. He determined that the heat evolved per second is equivalent to the electric power absorbed, or the power loss.
Answer:
Joule’s law, in electricity, mathematical description of the rate at which resistance in a circuit converts electric energy into heat energy. The English physicist James Prescott Joule discovered in 1840 that the amount of heat per second that develops in a wire carrying a current is proportional to the electrical resistance of the wire and the square of the current. He determined that the heat evolved per second is equivalent to the electric power absorbed, or the power loss.
Answer:
Joule’s law, in electricity, mathematical description of the rate at which resistance in a circuit converts electric energy into heat energy. The English physicist James Prescott Joule discovered in 1840 that the amount of heat per second that develops in a wire carrying a current is proportional to the electrical resistance of the wire and the square of the current. He determined that the heat evolved per second is equivalent to the electric power absorbed, or the power loss.
Answer:
Joule’s law, in electricity, mathematical description of the rate at which resistance in a circuit converts electric energy into heat energy. The English physicist James Prescott Joule discovered in 1840 that the amount of heat per second that develops in a wire carrying a current is proportional to the electrical resistance of the wire and the square of the current. He determined that the heat evolved per second is equivalent to the electric power absorbed, or the power loss.