Math, asked by sayanmandalpsd, 1 month ago

-does not exist(the last pic didnt came right) ​

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \tt{f(x) = 1 +  \left|  sin(x)\right| }

Now,

 \tt{f(x) =  \begin{cases} \sf{1 +  sin(x),  \:  \:  \:  \:  \:  \: 0 \leqslant x < \pi  }  \\  \sf{1 -  sin(x), \:  \:  \:  \:  \:  \: \pi \leqslant x < 2\pi }\end{cases}}

LHD:

\displaystyle \sf{  \lim_{h \to0} \dfrac{f(\pi - h) - f(\pi)}{h} }

\displaystyle \sf{  =  \lim_{h \to0} \dfrac{1 + sin(\pi - h) -  1}{h} }

\displaystyle \sf{  =  \lim_{h \to0} \dfrac{ sin(\pi - h)}{h} }

\displaystyle \sf{  =  \lim_{h \to0} \dfrac{ sin( h)}{h} }

 \sf{  =  1 }

RHD:

\displaystyle \sf{  \lim_{h \to0} \dfrac{f(\pi  + h) - f(\pi)}{h} }

\displaystyle \sf{   = \lim_{h \to0} \dfrac{1  -  sin(\pi  + h)  - 1}{h} }

\displaystyle \sf{   = \lim_{h \to0} \dfrac{  -  sin(\pi  + h)  }{h} }

\displaystyle \sf{   = \lim_{h \to0} \dfrac{   sin( h)  }{h} }

 \sf{ = 1}

SINCE, LHD=RHD, hence f'(π) exists

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given function is

\red{\rm :\longmapsto\:f(x) = 1 +  |sinx| }

Let us first define the function f(x).

 \red{\begin{gathered}\begin{gathered}\bf\: 1 +  |sinx|  = \begin{cases} &\sf{1 + sinx \:  \:  \: when \: 0 \leqslant x \leqslant \pi} \\ \\  &\sf{1 - sinx \:  \:  \: when \: \pi < x \leqslant 2\pi} \end{cases}\end{gathered}\end{gathered}}

LEFT HAND DERIVATIVE

\rm :\longmapsto\:\displaystyle\lim_{x \to \pi^-} \frac{f(x) - f(\pi)}{x - \pi}

 = \displaystyle\lim_{x \to \pi^-} \frac{1 + sinx - (1 + sin\pi)}{x - \pi}

 = \displaystyle\lim_{x \to \pi^-} \frac{1 + sinx - 1  -  0}{x - \pi}

 = \displaystyle\lim_{x \to \pi^-} \frac{sinx}{x - \pi}

To evaluate this limit, we use Method of Substitution.

So, Substitute

\red{\rm :\longmapsto\:x = \pi - h, \:  \: as \: x \to \: \pi \:  \: so \: h \:  \to \: 0}

 = \displaystyle\lim_{h \to 0} \frac{sin(\pi - h)}{\pi - h - \pi}

 = \displaystyle\lim_{h \to 0} \frac{sinh}{ - h}

 =  -  \: \displaystyle\lim_{h \to 0} \frac{sinh}{ h}

\rm \:  =  \:  -  \: 1

So,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to \pi^-} \frac{f(x) - f(\pi)}{x - \pi} =  \:  -  \: 1 \: }}

RIGHT HAND DERIVATIVE

\rm :\longmapsto\:\displaystyle\lim_{x \to \pi^ + } \frac{f(x) - f(\pi)}{x - \pi}

 = \displaystyle\lim_{x \to \pi^ + } \frac{1  -  sinx - (1 + sin\pi)}{x - \pi}

 = \displaystyle\lim_{x \to \pi^ + } \frac{1  -  sinx - 1  - 0}{x - \pi}

 = \displaystyle\lim_{x \to \pi^ + } \frac{-  sinx }{x - \pi}

To evaluate this limit, we use method of Substitution.

So, Substitute

\red{\rm :\longmapsto\:x = \pi  + h, \:  \: as \: x \to \: \pi \:  \: so \: h \:  \to \: 0}

 =  -  \: \displaystyle\lim_{h \to 0} \frac{sin(\pi + h)}{\pi + h - \pi}

 =  -  \: \displaystyle\lim_{h \to 0} \frac{ - sin(h)}{h}

 =  \: \displaystyle\lim_{h \to 0} \frac{sinh}{h}

\rm \:  =  \: 1

So,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to \pi^ + } \frac{f(x) - f(\pi)}{x - \pi} =  \:\: 1 \: }}

Hence,

\rm \implies\:\boxed{ \tt{ \: LHD \:  \ne \: RHD \: }}

 \red{\rm \implies\:f(x) \: is \: not \: differentiable \: at \: x = \pi}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions