does oygen and nitrogen show diagonal relationship
please answer don't spam
Answers
Answered by
2
Hlo mate here is ur ans..
A diagonal relationship is said to exist between certain pairs of diagonally adjacent elements in the second and third periods (first 20 elements) of the periodic table. These pairs (lithium (Li) and magnesium (Mg), beryllium (Be) and aluminium (Al), boron (B) and silicon (Si), etc.) exhibit similar properties; for example, boron and silicon are both semiconductors, forming halides that are hydrolysed in water and have acidic oxides.
A diagonal relationship is said to exist between certain pairs of diagonally adjacent elements in the second and third periods (first 20 elements) of the periodic table. These pairs (lithium (Li) and magnesium (Mg), beryllium (Be) and aluminium (Al), boron (B) and silicon (Si), etc.) exhibit similar properties; for example, boron and silicon are both semiconductors, forming halides that are hydrolysed in water and have acidic oxides.The organization of elements on the periodic table in to horizontal rows and vertical columns makes certain relationships more apparent (periodic law). Moving rightward and descending the periodic table have opposite effects on atomic radii of isolated atoms. Moving rightward across the period decreases the atomic radii of atoms, while moving down the group will increase the atomic radii.[1]
A diagonal relationship is said to exist between certain pairs of diagonally adjacent elements in the second and third periods (first 20 elements) of the periodic table. These pairs (lithium (Li) and magnesium (Mg), beryllium (Be) and aluminium (Al), boron (B) and silicon (Si), etc.) exhibit similar properties; for example, boron and silicon are both semiconductors, forming halides that are hydrolysed in water and have acidic oxides.The organization of elements on the periodic table in to horizontal rows and vertical columns makes certain relationships more apparent (periodic law). Moving rightward and descending the periodic table have opposite effects on atomic radii of isolated atoms. Moving rightward across the period decreases the atomic radii of atoms, while moving down the group will increase the atomic radii.[1]Similarly, on moving rightward a period, the elements become progressively more covalent[clarification needed], less basic and more electronegative, whereas on moving down a group the elements become more ionic, more basic and less electronegative. Thus, on both descending a period and crossing a group by one element, the changes "cancel" each other out, and elements with similar properties which have similar chemistry are often found – the atomic size[clarification needed], electronegativity, properties of compounds (and so forth) of the diagonal members are similar...
❤️❤️Hope this helps u dear ❤️❤️
✌️Pls Mark as brainliest✌️
Don't forget to follow me :)
Similar questions