Physics, asked by qarikhalil639, 4 months ago

does
shuffing feel
acroos a carpet cause hairs
to
stand an our
body​

Answers

Answered by CutieBun01
4

Answer:

Let us learn about cross multiplication formula first:

We consider two linear equations

\quad\quad \mathsf{a_{1}x+b_{1}y+c_{1}=0}a

1

x+b

1

y+c

1

=0

\quad\quad \mathsf{a_{2}x+b_{2}y+c_{2}=0}a

2

x+b

2

y+c

2

=0

Using the formula for cross multiplication, we get

\quad\mathsf{\dfrac{x}{b_{1}c_{2}-b_{2}c_{1}}=\dfrac{y}{c_{1}a_{2}-c_{2}a_{1}}=\dfrac{1}{a_{1}b_{2}-a_{2}b_{1}}}

b

1

c

2

−b

2

c

1

x

=

c

1

a

2

−c

2

a

1

y

=

a

1

b

2

−a

2

b

1

1

Now we proceed to solve the given problem:

The given equations are

\quad\quad \mathsf{\dfrac{15}{x}+\dfrac{2}{y}=17}

x

15

+

y

2

=17

\quad\quad \mathsf{\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{36}{5}}

x

1

+

y

1

=

5

36

Then the given equations become

\quad\quad \mathsf{15p+2q=17}15p+2q=17 15p+2q=17

\quad\quad \mathsf{p+q=\frac{36}{5}}p+q=

5

36

\quad\quad \mathsf{15p+2q-17=0}15p+2q−17=015p+2q−17=015p+2q−17=0

\quad\quad \mathsf{5p+5q-36=0}5p+5q−36=05p+5q−36=05p+5q−36=0

Now comparing these equations with the general equations, we have

\quad\quad \mathsf{a_{1}=15,\:b_{1}=2,\:c_{1}=-17}a

1

=15,b

1

=2,c

1

=−17

\quad\quad \mathsf{a_{2}=5,\:b_{2}=5,\:c_{2}=-36}a

2

=5,b

2

=5,c

2

=−36

Using the formula for cross multiplication, we get

\quad\mathsf{\dfrac{p}{b_{1}c_{2}-b_{2}c_{1}}=\dfrac{q}{c_{1}a_{2}-c_{2}a_{1}}=\dfrac{1}{a_{1}b_{2}-a_{2}b_{1}}}

b

1

c

2

−b

2

c

1

p

=

c

1

a

2

−c

2

a

1

q

=

a

1

b

2

−a

2

b

1

1

\to \mathsf{\dfrac{p}{2\times (-36)-5\times (-17)}=\dfrac{q}{(-17)\times 5-(-36)\times 15}=\dfrac{1}{15\times 5-5\times 2}}→

2×(−36)−5×(−17)

p

=

(−17)×5−(−36)×15

q

=

15×5−5×2

1

\to \mathsf{\dfrac{p}{-72+85}=\dfrac{q}{-85+540}=\dfrac{1}{75-10}}→

−72+85

p

=

−85+540

q

=

75−10

1

\to \mathsf{\dfrac{p}{13}=\dfrac{q}{455}=\dfrac{1}{65}}→

13

p

=

455

q

=

65

1

\quad\quad \mathsf{\dfrac{p}{13}=\dfrac{1}{65}}

13

p

=

65

1

\implies \mathsf{p=\dfrac{13}{65}}⟹p=

65

13

\implies \mathsf{p=\dfrac{1}{5}}⟹p=

5

1

⟹p

\implies \mathsf{\dfrac{1}{x}=\dfrac{1}{5}\quad [\because p=\dfrac{1}{x}]}⟹

x

1

=

5

1

[∵p=

x

1

]

\implies \mathsf{\dfrac{1}{y}=7\quad [\because q=\dfrac{1}{y}]}⟹

y

1

=7[∵q=

y

1

]

Therefore the required solution is

\quad\quad \underline{\boxed{\bold{x=5,\:y=\dfrac{1}{7}}}}

x=5,y=

7

1

Similar questions