Does the value of wiens constant change for different bodies
Answers
Answered by
0
Black body radiation as a function of wavelength for various absolute temperatures. Each curve is seen to peak at a somewhat different wavelength; Wien's law describes the shift of that peak in terms of temperature.
Wien's displacement law states that the black body radiation curve for different temperatures peaks at a wavelength inversely proportional to the temperature. The shift of that peak is a direct consequence of the Planck radiation law, which describes the spectral brightness of black body radiation as a function of wavelength at any given temperature. However, it had been discovered by Wilhelm Wien several years before Max Planck developed that more general equation, and describes the entire shift of the spectrum of black body radiation toward shorter wavelengths as temperature increases.
Formally, Wien's displacement law states that the spectral radiance of black body radiation per unit wavelength, peaks at the wavelength λmax given by:
{\displaystyle \lambda _{\text{max}}={\frac {b}{T}}}
where T is the absolute temperature in kelvins. b is a constant of proportionalitycalled Wien's displacement constant, equal to 2.8977729(17)×10−3 m⋅K[1], or more conveniently to obtain wavelength in micrometers, b ≈ 2900 μm·K. If one is considering the peak of black body emission per unit frequency or per proportional bandwidth, one must use a different proportionality constant. However, the form of the law remains the same: the peak wavelength is inversely proportional to temperature (or the peak frequency is directly proportional to temperature).
Wien's displacement law may be referred to as "Wien's law", a term which is also used for the Wien approximation.
Wien's displacement law states that the black body radiation curve for different temperatures peaks at a wavelength inversely proportional to the temperature. The shift of that peak is a direct consequence of the Planck radiation law, which describes the spectral brightness of black body radiation as a function of wavelength at any given temperature. However, it had been discovered by Wilhelm Wien several years before Max Planck developed that more general equation, and describes the entire shift of the spectrum of black body radiation toward shorter wavelengths as temperature increases.
Formally, Wien's displacement law states that the spectral radiance of black body radiation per unit wavelength, peaks at the wavelength λmax given by:
{\displaystyle \lambda _{\text{max}}={\frac {b}{T}}}
where T is the absolute temperature in kelvins. b is a constant of proportionalitycalled Wien's displacement constant, equal to 2.8977729(17)×10−3 m⋅K[1], or more conveniently to obtain wavelength in micrometers, b ≈ 2900 μm·K. If one is considering the peak of black body emission per unit frequency or per proportional bandwidth, one must use a different proportionality constant. However, the form of the law remains the same: the peak wavelength is inversely proportional to temperature (or the peak frequency is directly proportional to temperature).
Wien's displacement law may be referred to as "Wien's law", a term which is also used for the Wien approximation.
Attachments:
Similar questions
Physics,
8 months ago
Math,
8 months ago
Math,
8 months ago
Political Science,
1 year ago
History,
1 year ago