Math, asked by nirmala19982, 2 months ago

Domain of √a²- b²), a>0 is​

Answers

Answered by King412
87

 \\   \bigstar \:   \underbrace\bold{\large \underline{Concept :  - }} \\

If a function contains a square root , set the equation Inside the square root greater or equal to zero and solve. The resulting answer is the domain.

And

If a function contains a fraction, set the denominator not equal to zero and solve. This resulting answer is the domain.

 \\   \bigstar \:   \underbrace\bold{\large \underline{Solution :  - }} \\

Here,

We have ,\sf f(x) =  \sqrt{( {a}^{2} -  {x}^{2} ) } \:  (a > 0)

  \\  \sf \: Clearly  \:  f(x) \:  is \:  defined,  \: if  \: a^2 -x^2 \ge  0 \\

 \\  \:  \:  \:  \:  \:  \:  \sf \:  \:  \longmapsto \:  \:  \:  {x}^{2}  \le  {a}^{2}  \\

 \\  \:  \:  \:  \:  \:  \:  \sf \:  \:  \longmapsto \:  \:  \:   - a \le x \le a   \\

 \\  \sf \qquad \qquad \qquad \:  \because \: a > 0 \\

Therefore,

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:     \mid{\overline{\underline\blue{  \: \bf{Domain  \: of \:   { f}  \: is [-a,a] \:  }}}} \mid \\

Similar questions