Math, asked by shravankunhoos8577, 7 months ago

Domain of function G(t) = 2/ t^2-16

Answers

Answered by Asterinn
3

Given :

 \sf \large G(t) =  \dfrac{2}{ {t}^{2}  - 16}

To find :

  • Domain of the given function

Solution :

We have to find domain of given function :-

\sf \implies G(t) =  \dfrac{2}{ {t}^{2}  - 16}

We know that , denominator cannot be zero.

\sf \therefore{ {t}^{2}  - 16} \ne0

\sf \implies{ {t}^{2}  } \ne 16

\sf \implies{ {t} } \ne  \sqrt{16}

\sf \implies{ {t}  } \ne \pm4

This means that , t ≠ 4 and t ≠ -4

\sf\therefore \: t \in R -  \{  \pm 4 \}

So, domain of the given function can be any real number except +4 or -4.

Answer :

 \therefore  \sf   domain : \\  \sf\large \: t \in R -  \{  \pm 4 \}

Similar questions