Math, asked by rawatanshika45127, 9 months ago

☞ don't COPIED and IRRELEVANT ANSWERS ❌❌​

Attachments:

Answers

Answered by BrainlyPopularman
11

Question :

 \\  \bf  \to \: If \: \: f(x) = 1 - x +  {x}^{2}  -  {x}^{3} + ........ -  {x}^{99}  + {x}^{100} ,then \:  \: f'(1) \:  \: is \:  \: equal \:  \: to \:  -  \\

 \\  \bf  (A)  \: 150 \\

 \\  \bf  (B)  \: -50 \\

 \\  \bf  (C)  \: -150 \\

 \\  \bf  (D)  \: 50 \\

ANSWER :

GIVEN :

• A function  \\ \bf \: \: f(x) = 1 - x +  {x}^{2}  -  {x}^{3} + ........ -  {x}^{99}  + {x}^{100} \\

TO FIND :

• f'(x) = ?

SOLUTION :

 \\ \implies \bf f(x) = 1 - x +  {x}^{2}  -  {x}^{3} + ........ -  {x}^{99}  + {x}^{100} \\

• Using identity –

 \\ \implies \bf  \dfrac{d({x}^{n})}{dx} = n {x}^{n - 1} \\

• Now Differentiate with respect to 'x' –

 \\ \bf \implies f'(x) =  \dfrac{d(1)}{dx}  - \dfrac{d(x)}{dx} +\dfrac{d( {x}^{2} )}{dx}-\dfrac{d({x}^{3})}{dx}+ ........ -  \dfrac{d( {x}^{99} )}{dx}+\dfrac{d( {x}^{100} )}{dx} \\

 \\ \bf \implies f'(x) = 0-1+2x-3 {x}^{2} + ........ -99 {x}^{98} +100 {x}^{99} \\

• Now put x = 1

 \\ \bf \implies f'(1) = -1+2(1)-3 {(1)}^{2} + ........ -99 {(1)}^{98} +100 {(1)}^{99} \\

 \\ \bf \implies f'(1) = -1+2-3+ ........ -99+100\\

 \\ \bf \implies f'(1) = (-1+2) + (-3+4) +  ........  + (-99+100)\\

 \\ \bf \implies f'(1) = 1+1 +  ........  + 1 \\

 \\ \bf  \:  \: \because \:  \:  only \:  \: 50 \:  \: terms \:  \: remaining. \\

• So that –

 \\ \large \implies{ \boxed{ \bf f'(1) =50}}\\

Hence , Option (D) is correct.

Answered by Anonymous
0

CRM

PLEASE CHECK YR ANSWER CAREFULLY

HOPE IT HELPS TO U

PLEASE MARK ME AS BRAINLIST

Attachments:
Similar questions