Math, asked by kiara9514, 8 months ago

don't post irrelevant answers...

Attachments:

Answers

Answered by saounksh
3

ᴀɴsᴡᴇʀ

 \boxed{\green{\int_{2}^{4} \frac{\sqrt{x} } {\sqrt{6-x} +\sqrt{x}}dx = 1} }

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

ғᴏʀᴍᴜʟᴀ

 \int_{a}^{b} f(x)dx = \int_{a}^{b} f((a+b) -x)dx

ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ

 I = \int_{2}^{4} \frac{\sqrt{x} } {\sqrt{6-x} +\sqrt{x}}dx....(1)

Using the above formula,

 I = \int_{2}^{4} \frac{\sqrt{(2+4)-x} } {\sqrt{6-[(2+4)-x] } +\sqrt{(2+4)-x}}dx

 I = \int_{2}^{4} \frac{\sqrt{6-x} } {\sqrt{x} +\sqrt{6-x}}dx....(2)

Adding (1) and (2), we get

 2I = \int_{2}^{4} \frac{\sqrt{x} } {\sqrt{6-x} +\sqrt{x}}dx + \int_{2}^{4} \frac{\sqrt{6-x} } {\sqrt{x} +\sqrt{6-x}}dx

 2I = \int_{2}^{4} \frac{\sqrt{x} + \sqrt{6-x}} {\sqrt{6-x} +\sqrt{x}}dx

 2I = \int_{2}^{4} 1dx

 2I = [x]_{2}^{4}

 2I = [4-2]

 2I = 2

 I = 1

Answered by Anonymous
3

CRM

PLEASE CHECK YR ANSWER CAREFULLY

HOPE IT HELPS TO U

PLEASE MARK ME AS BRAINLIST

Attachments:
Similar questions