Math, asked by kiara9514, 7 months ago

don't post irrelevant answers

Attachments:

Answers

Answered by saounksh
3

ᴀɴsᴡᴇʀ

 \star \star \blue{\boxed{\red{\boxed{27I² = 4}}}} \star \star

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

ғᴏʀᴍᴜʟᴀ

\int_{a}^{b}f(x)dx = \int_{a}^{b}f((a+b) - x)dx

ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ

 I = \frac{2}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{dx}{(1+{e}^{sin(x)})(2-cos(2x) )}.... (1)

Using the above formula

 I = \frac{2}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{dx}{(1+{e}^{sin[(-\frac{\pi}{4} + \frac{\pi}{4}) - x]})(2-cos[2[(-\frac{\pi}{4} +\frac{\pi}{4}) - x]] )}

 I = \frac{2}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{dx}{(1+{e}^{sin[0 - x]})(2-cos[2[0 - x]] )}

 I = \frac{2}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{dx}{(1+{e}^{-sin(x)})(2-cos(2x) )}

 I = \frac{2}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{{e}^{sin(x)}dx}{{e}^{sin(x)}(1+{e}^{-sin(x)})(2-cos(2x) )}

 I = \frac{2}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{{e}^{sin(x)}dx}{({e}^{sin(x)} + 1)(2-cos(2x) )}.... (2)

Adding (1) and (2), we get

 2I = \frac{2}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{dx}{(1+{e}^{sin(x)})(2-cos(2x)))} + \frac{2}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{{e}^{sin(x)}dx}{({e}^{sin(x)} + 1)(2-cos(2x) )}

 2I = \frac{2}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{(1+{e}^{sin(x)})dx}{(1+{e}^{sin(x)})(2-cos(2x))}

 I = \frac{1}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{dx}{2-cos(2x)}

 I = \frac{1}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{dx}{2 - \frac{1-{tan}^{2}(x)} {1+{tan}^{2}(x)} }

 I = \frac{1}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{[1+{tan}^{2}(x)]dx}{2[1+{tan}^{2}(x)] -[1-{tan}^{2}(x)] }

 I = \frac{1}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{[{sec}^{2}(x)]dx}{2+2{tan}^{2}(x) - 1 + {tan}^{2}(x)}

 I = \frac{1}{π}\int_{-\frac{\pi}{4} }^{\frac{\pi}{4}} \frac{[{sec}^{2}(x)]dx}{3{tan}^{2}(x) + 1}

Substitute  tan(x) = t

 \implies {sec}^{2}(x)dx = dt

As  x \to -\frac{\pi}{4}, t \to - 1

As  x \to \frac{\pi}{4}, t \to 1

 I = \frac{1}{π}\int_{-1 }^{1} \frac{dt}{3{t}^{2} + 1}

 I = \frac{1}{π}\int_{-1 }^{1} \frac{dt}{{(\sqrt{3}t) }^{2}+ 1}

 I = \frac{1}{π}[\frac{1}{\sqrt{3}}{tan}^{-1}(\sqrt{3}t) ]_{-1 }^{1}

 I = \frac{1}{\sqrt{3}\pi }[{tan}^{-1}(\sqrt{3}) -{tan}^{-1}(-\sqrt{3}) ]

 I = \frac{1}{\sqrt{3}\pi }[{tan}^{-1}(\sqrt{3}) +{tan}^{-1}(\sqrt{3}) ]

 I = \frac{1}{\sqrt{3}\pi }[\frac{\pi }{3} +\frac{\pi } {3}]

 I = \frac{1}{\sqrt{3}\pi }\frac{2\pi }{3}

 I = \frac{2}{3\sqrt{3 }}

 {I}^{2} = \frac{4}{9\times 3}

 27{I}^{2} = 4

Answered by ItzShruti14
1

see above attachment and reply

Attachments:
Similar questions