Math, asked by BrainlyShadow01, 9 months ago

don't post irrelevant answers

Attachments:

Answers

Answered by Asterinn
2

kindly check the attachment for the stepwise solution and answer.

please mark my answer as brainliest please ♥️

Attachments:
Answered by pulakmath007
8

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

 log_{x}(a)  +  log_{x}(b)  =  log_{x}(ab)

2.

 log_{x}( {y}^{m} )  = m log_{x}(y)

3.

1 + 2 + 3 + .... + n =  \frac{n(n + 1)}{2}

CALCULATION

1.

2logx \:  + 2log {x}^{2}  + 2log {x}^{3} + ........ + 2log {x}^{n}

 = 2logx \:  + (2 \times 2)log {x}  + (2 \times 3)log {x}+ ........ + (2 \times n)log {x}

 = 2logx \:  + 4log {x}  + 6log {x}+ ........ + 2nlog {x}

 = 2logx \: (1 + 2 + 3..... + n)

 =  \displaystyle \: 2logx \:  \times  \frac{n(n + 1)}{2}

 = n(n + 1)logx

2.

 \displaystyle \:  log_{2}(1 + \frac{1}{2}  )  + log_{2}(1 + \frac{1}{3}  )  + log_{2}(1 + \frac{1}{4}  )  + .... + log_{2}(1 + \frac{1}{31}  )

 =  \displaystyle \:  log_{2}( \frac{3}{2}  )  + log_{2}(\frac{4}{3}  )  + log_{2}(\frac{5}{4}  )  + .... + log_{2}(\frac{32}{31}  )

 =  \displaystyle \:  log_{2}( \frac{3}{2}   \times \frac{4}{3}   \times \frac{5}{4}   \times ..... \times  \frac{32}{31}  )

 =  \displaystyle \: log_{2}( \frac{32}{2} )

 =  \displaystyle \: log_{2}(16)

 =    \displaystyle \: log_{2}( {2}^{4} )

 = 4 log_{2}(2)

 = 4 \times 1

 = 4

Similar questions