Math, asked by kiara9514, 8 months ago

don't post irrelevant answers...


step by step in copy ✔️

Attachments:

Answers

Answered by saounksh
3

Answer:

0

Step-by-step explanation:

Let us simplify the expression in ∑ first.

k = 0

 \sec( \frac{7\pi}{12} +  \frac{k\pi}{2} )\sec( \frac{7\pi}{12} +  \frac{(k + 1)\pi}{2}  )

 =  \sec( \frac{7\pi}{12} )  \sec( \frac{7\pi}{12}  +  \frac{\pi}{2} )

 =  -  \sec( \frac{7\pi}{12} ) \csc( \frac{7\pi}{12} )

k = 1

\sec( \frac{7\pi}{12} +  \frac{k\pi}{2} )\sec( \frac{7\pi}{12} +  \frac{(k + 1)\pi}{2}  )

 = \sec( \frac{7\pi}{12} +  \frac{\pi}{2} )\sec( \frac{7\pi}{12} + \pi)

 = \csc( \frac{7\pi}{12} )  \sec( \frac{7\pi}{12} )

k = 2

\sec( \frac{7\pi}{12} +  \frac{k\pi}{2} )\sec( \frac{7\pi}{12} +  \frac{(k + 1)\pi}{2}  )

 = \sec( \frac{7\pi}{12} +  \pi)\sec( \frac{7\pi}{12} +  \frac{3\pi}{2}  )

 =  -  \sec( \frac{7\pi}{12} )  \csc( \frac{7\pi}{12} )

k = 3

\sec( \frac{7\pi}{12} +  \frac{k\pi}{2} )\sec( \frac{7\pi}{12} +  \frac{(k + 1)\pi}{2}  )

 = \sec( \frac{7\pi}{12} +  \frac{3\pi}{2} )\sec( \frac{7\pi}{12} +  2\pi  )

 = \csc( \frac{7\pi}{12} )\sec( \frac{7\pi}{12})

The pattern will repeat like this. Now

∑[\sec( \frac{7\pi}{12} +  \frac{k\pi}{2} )\sec( \frac{7\pi}{12} +  \frac{(k + 1)\pi}{2}  )]

 = (-1+1-1+1-1+1-1+1-1+1-1) \sec( \frac{7\pi}{12} )  \csc( \frac{7\pi}{12} )

 =  -  \sec( \frac{7\pi}{12} )  \csc( \frac{7\pi}{12} )

The given expression becomes

 \sec {}^{ - 1} ( \frac{ -  \sec( \frac{7\pi}{12} )  \csc( \frac{7\pi}{12} ) }{4 } )

 =  \sec {}^{ - 1} ( \frac{ - 1}{2.2 \sin( \frac{7\pi}{12} )  \cos( \frac{7\pi}{12} ) } )

 =  \sec {}^{ - 1} ( \frac{ - 1}{2 \sin( \frac{7\pi}{6} ) } )

 =  \sec {}^{ - 1} ( -  \frac{1}{2} \csc(\pi +  \frac{\pi}{6} )  )

 =  \sec {}^{ - 1} (\frac{1}{2} \csc( \frac{\pi}{6} )  )

 =  \sec {}^{ - 1} ( \frac{1}{2} \times 2 )

 =  \sec {}^{ - 1} (1)

 = 0

Answered by pulakmath007
2

Answer:

Sec-1 [ 1/4 Σ sec ( 7π/12 + kπ/12) sec ( 7π/12 + (k+1)π/2) ]

= Sec-1 [ 1/4 Σ sec ( 7π/12 + kπ/12) cosec ( 7π/12 + kπ/2) ]

= Sec-1 [ -1/4 Σ 2/ sin ( 7π/6 + kπ)

= Sec-1 [ 1/2 Σ 1/(-1) ^(k+1)sin (π/6)

= Sec-1 [ Σ 1/(-1) ^(k+1)]

= Sec-1 (1)

= 0

Similar questions