Physics, asked by Anonymous, 9 months ago

⚠️Don't spam⚠️ Calculate the force of Attraction due to the earth on a ball of 1 kg mass lying in the ground. [Mass of Earth = 6 × 10²⁴ kg , Radius of Earth = 6.4 × 10³ km, G = 6.7 × 10^-8 N m²/kg². It's a hard Question, but can be done Please help me

Answers

Answered by Anonymous
241

━━━━━━━━━━━━━━━━━━━━

 {\red { \bf Question}}

  • Calculate the force of Attraction due to the earth on a ball of 1 kg mass lying in the ground. [Mass of Earth = 6 × 10²⁴ kg , Radius of Earth = 6.4 × 10³ km, G = 6.7 × 10⁻¹¹ N m²/kg²]

 \underline {\underline{\purple { \sf Given}}}

  • Mass of Ball (m₁) = 1 kg
  • Mass of Earth (m₂)= 6 × 10²⁴ kg
  • Radius of Earth (r)= 6.4 × 10³ km
  • Gravitational Constant (G)= 6.7 × 10⁻⁸ N m²/kg².

 \underline {\underline{\purple { \sf To \: Find}}}

  • Force of attraction due to the earth

 \red{ \sf Mass \:  of  \: Ball = m _1}

 \red{ \sf Mass \:  of  \: Earth = m _2}

____________________

 \orange{ \sf m_1 = 1 \:  Kg}

 \orange{ \sf m_2= 6 \times 10^{24}  \: km}

 \sf r = 6.4 \times 10^{3} \: km

 \sf r = 6.4 \times 10^{3} \times 1000 \: m

 \sf r = 6.4 \times 10^{6} \: m

____________________

 \sf F = 6.7 \times  {10}^{ - 11}   \times  \dfrac{1 \times 6 \times  {10}^{24} }{(6.4 \times 6.4 \times  {10}^{6})^{2}  }

\sf F =  \dfrac{6.7 \times  {10}^{ - 11} \times 6 \times  {10}^{24}  }{6.4 \times 6.4 \times  {10}^{6}  \times  {10}^{6} }

\sf F =  \dfrac{6.7 \times  6 \times  {10}^{ - 11}  \times  {10}^{24}  }{6.4 \times 6.4 \times  {10}^{6}  \times  {10}^{6} }

\sf F =  \dfrac{6.7 \times  6 \times  {10}^{ - 13}  }{6.4 \times 6.4 \times  {10}^{ 6}   \times  {10}^{6}  }

\sf F =  \dfrac{6.7 \times  6 \times  {10}^{ 13}  }{6.4 \times 6.4 \times  {10}^{12}  }

\sf F =  \dfrac{6.7 \times  6 \times  {10} }{6.4 \times 6.4  }

\sf F =  \dfrac{67 \times  6 \times {10} \times 10 \times  \cancel{10} }{64 \times 64  \times  \cancel{10} }

\sf F =  \dfrac{67 \times  6 \times {10} \times 10 }{64 \times 64   }

\sf F =  \dfrac{40200 }{4096 }

 \boxed{\sf F =  9.8}

Therefore, 9.8 Newton

 \underline { \underline{ \red { \sf Three : Equations \: of \: Motion}}}

  •  \blue{\sf v = u + at}
  •  \blue{\sf s = ut + \dfrac{1}{2} at ^{2}}
  •  \blue{\sf v^{2}-u^{2} = 2as}

 \underline { \underline{ \green { \sf Some \: Important \: Formulas}}}

  •  \blue{ \sf F = \dfrac{Gm_1 \times Gm_2}{R^{2} }}

  •  \blue{\sf g = \dfrac{Gm}{R^{2} }}

  •  \blue{\sf v =  u + gt}

  •  \blue {\sf v^{2} - u^{2} = 2gs}

  •  \blue {\sf s = ut + \dfrac{1}{2} gt^{2} }

━━━━━━━━━━━━━━━━━━━━

Attachments:

StarrySoul: Perfect! ^•^
Answered by StarrySoul
62

Correct Question :

• Calculate the force of Attraction due to the earth on a ball of 1 kg mass lying in the ground. [Mass of Earth = 6 × 10²⁴ kg , Radius of Earth = 6.4 × 10³ km, G = 6.7 × 10⁻¹¹ N m²/kg².

[ The value of universal gravitational constant G had been found to be 6.7 × 10⁻¹¹ N m²/kg² ]

Given :

• Mass of the earth, M = 6 × 10²⁴ kg

• Mass of the ball, m = 1 kg

• Gravitational constant, G = 6.7 × 10⁻¹¹ Nm²/kg²

• Radius of the earth = 6.4 × 10³ km

To Find :

• Force of attraction due to the earth on the ball

Solution :

First of all, let's convert the given radius into it's standard form :

→ 6.4 × 10³ km

→ 6.4 × 10³ × 1000 m

→ 6.4 × 10⁶ m

Now,

To calculate the gravitational Force anywhere in this universe, the formula used is :

 \bigstar \:  \sf \: F =  G \:  \times  \dfrac{M \times m}{ {r}^{2} }

 \sf \longrightarrow \: F =   \dfrac{6.7 \times  {10}^{ - 11}  \times 6 \times  {10}^{24} \times 1 }{ {(6.4 \times  {10}^{6} })^{2} }

 \sf \longrightarrow \: F =   \dfrac{6.7 \times 6 \times 1 \times  {10}^{ - 11}  \times  {10}^{24} }{6.4 \times 6.4 \times  {10}^{6}  \times  {10}^{6}  }

 \sf \longrightarrow \: F =   \dfrac{40.2 \times  {10}^{ - 11 + 24} }{40.96 \times {10}^{6 + 6}  }

 \sf \longrightarrow \: F =     \dfrac{40.2 \times  {10}^{13} }{40.96 \times  {10}^{12} }

 \sf \longrightarrow \: F =     \dfrac{40.2}{40.96}  \times  ({10})^{13 - 12}

 \sf \longrightarrow \: F =     \dfrac{40.2}{40.96}  \times10

 \sf \longrightarrow \: F =     \dfrac{4020}{4096}  \times10

 \sf \longrightarrow \: F =   \cancel   \dfrac{40200}{4096}

 \sf \longrightarrow \: F = 9.8 \: Newtons

\therefore The earth exerts a Gravitational force of 9.8 Newtons on a ball of mass 1 kg.

It is due to this large force exerted by the earth that when the 1 kg ball is dropped from a height, it falls to the earth.

Note - Refer to the attachment, if you're facing issues in understanding the calculation part ^^"

Attachments:
Similar questions