Math, asked by saryka, 7 hours ago

➟ Don't spam
➟ Explaination needed​

Attachments:

Answers

Answered by mathdude500
107

\large\underline{\sf{Solution-}}

 \sf \: f(x) = \tt \:\lim_{n\to \infty } {\bigg(\dfrac{ {n}^{n}(x + n)\bigg(x + \dfrac{n}{2} \bigg) -  - \bigg(x + \dfrac{n}{n} \bigg)}{n!( {x}^{2}  +  {n}^{2})\bigg( {x}^{2}+\dfrac{ {n}^{2} }{4} \bigg) -  - \bigg( {x}^{2}+\dfrac{ {n}^{2} }{ {n}^{2} } \bigg)} \bigg) }^{\dfrac{x}{n} }

 \sf  = \tt \:\lim_{n\to \infty } {\bigg(\dfrac{ {n}^{n}n(1 +  \frac{x}{n} ) \frac{2}{n} \bigg(1 + \dfrac{2x}{n} \bigg) -  -  \frac{n}{n}\bigg(1 + \dfrac{nx}{n} \bigg)}{n! {n}^{2} ( \frac{ {x}^{2} }{ {n}^{2} } +1) \frac{4}{ {n}^{2} } \bigg(1+\dfrac{ {4x}^{2} }{ {n}^{2} } \bigg) -  -  \frac{ {n}^{2} }{ {n}^{2} } \bigg(1+\dfrac{ {n}^{2} {x}^{2} }{ {n}^{2} } \bigg)} \bigg) }^{\dfrac{x}{n} }

 \sf  = \tt \:\lim_{n\to \infty } {\bigg(\dfrac{(1 +  \dfrac{x}{n} ) \bigg(1 + \dfrac{2x}{n} \bigg) -  -  \bigg(1 + \dfrac{nx}{n} \bigg)}{( \dfrac{ {x}^{2} }{ {n}^{2} } +1) \bigg(1+\dfrac{ {4x}^{2} }{ {n}^{2} } \bigg) -  - \bigg(1+\dfrac{ {n}^{2} {x}^{2} }{ {n}^{2} } \bigg)} \bigg) }^{\dfrac{x}{n} }

 \rm \:  =  \displaystyle \: \tt \:\lim_{n\to \:  \infty } \prod_{r=1}^n {\bigg(\dfrac{1 +  \dfrac{rx}{n} }{1 +  \dfrac{ {r}^{2}  {x}^{2} }{ {n}^{2} } } \bigg) }^{ \dfrac{x}{n} }

Now, taking log on both sides, we get

 \rm \:log \: f(x)  =log \bigg \{ \displaystyle \: \tt \:\lim_{n\to \:  \infty } \prod_{r=1}^n {\bigg(\dfrac{1 +  \dfrac{rx}{n} }{1 +  \dfrac{ {r}^{2}  {x}^{2} }{ {n}^{2} } } \bigg) }^{ \dfrac{x}{n} } \bigg \}

 \rm \:log \: f(x)  = \bigg \{ \displaystyle \: \tt \:\lim_{n\to \:  \infty } \dfrac{x}{n}  \sum_{r=1}^n log{\bigg(\dfrac{1 +  \dfrac{rx}{n} }{1 +  \dfrac{ {r}^{2}  {x}^{2} }{ {n}^{2} } } \bigg) }\bigg \}

Now, using limit as a sum, we get

\rm :\longmapsto\:log \: f(x) = x \displaystyle \int_{0}^1 \: log\bigg( \dfrac{1 + xy}{1 +  {x}^{2} {y}^{2}  } \bigg)dy

To evaluate this integral, we use method of Substitution

\rm :\longmapsto\:Put \: xy = t

\rm :\longmapsto\:x\dfrac{dy}{dt} = 1

\rm :\longmapsto\:xdy = dt

Now, we have to change the limits too

when y = 0, t = 0

and

when y = 1, t = x

So above integral can be reduced to

\rm :\longmapsto\:log \: f(x) =  \displaystyle \int_{0}^x \: log\bigg( \dfrac{1 + t}{1 +  {t}^{2}} \bigg)dt

Now, Differentiate using Leibniz Rule, we get

\rm :\longmapsto\:\dfrac{f'(x)}{f(x)}  = log\bigg( \dfrac{1 + x}{1 +  {x}^{2} } \bigg)

\rm :\longmapsto\:f'(x)  =f(x) \:  log\bigg( \dfrac{1 + x}{1 +  {x}^{2} } \bigg)

As x > 0, it implies f(x) > 0.

Now at x = 2

\rm :\longmapsto\:f'(2)  =f(2) \:  log\bigg( \dfrac{1 + 2}{1 +  {2}^{2} } \bigg)

\rm :\longmapsto\:f'(2)  =f(2) \:  log\bigg( \dfrac{3}{5 } \bigg)

\bf\implies \:f'(2) < 0 \:  \:  \:  \: as \: log \dfrac{3}{5}  < 0

It implies f(x) is an increasing function.

\bf\implies \:f\bigg( \dfrac{1}{3} \bigg) \leqslant f\bigg(\dfrac{2}{3} \bigg)

Hence,

Option (b) is correct.

Similar questions