Math, asked by Anonymous, 6 hours ago







Don’t spam...

Otherwise your answers and ID both will be reported to a moderator. ​​

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ

❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {sin}^{ - 1}  \sqrt{x} -  {cos}^{ - 1} \sqrt{x} }{ {sin}^{ - 1} \sqrt{x}  +  {cos}^{ - 1} \sqrt{x} } \: dx

We know,

 \red{\boxed{\tt{  {sin}^{ - 1}x +  {cos}^{ - 1}x =  \dfrac{\pi}{2} \: }}}

So, using this identity, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{ {sin}^{ - 1}  \sqrt{x}  - \bigg[\dfrac{\pi}{2}  -  {sin}^{ - 1} \sqrt{x} \bigg]}{\dfrac{\pi}{2}}  \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{2 {sin}^{ - 1}  \sqrt{x} - \dfrac{\pi}{2}}{\dfrac{\pi}{2}}  \: dx

\rm \:  =  \: \dfrac{4}{\pi}\displaystyle\int\rm  {sin}^{ - 1} \sqrt{x} dx - \displaystyle\int\rm 1 \: dx

\rm \:  =  \: \dfrac{4}{\pi}I \:  -  \: x \:  +  \: c -  -  - (1)

where,

\red{\rm :\longmapsto\:\displaystyle\int\rm  {sin}^{ - 1} \sqrt{x} \: dx \: }

To evaluate this integral, we use method of Substitution.

So, Substitute

\red{\rm :\longmapsto\: \sqrt{x} = siny}

\red{\rm :\longmapsto\:x =  {sin}^{2}y}

\red{\rm :\longmapsto\:dx = 2siny \: cosy \: dy}

\red{\rm :\longmapsto\:dx \:  =  \: sin2y \: dy \: }

So, above integral can be rewritten as

\rm :\longmapsto\:I = \displaystyle\int\rm  {sin}^{ - 1}(siny) \: sin2y \: dy

\rm :\longmapsto\:I = \displaystyle\int\rm  y \: sin2y \: dy

Now, using integration by parts, we have

\rm :\longmapsto\:I = y\displaystyle\int\rm sin2ydy - \displaystyle\int\rm \bigg[\dfrac{d}{dy} y\displaystyle\int\rm sin2y \: dy\bigg]dy

\rm :\longmapsto\:I =  - \dfrac{ycos2y}{2}  +  \displaystyle\int\rm \dfrac{cos2y}{2} \: dy

\rm :\longmapsto\:I =  - \dfrac{ycos2y}{2}  +   \dfrac{sin2y}{4}

\rm :\longmapsto\:I =  - \dfrac{y(1 -  {2sin}^{2} y)}{2}  +   \dfrac{2 \: siny \: cosy}{4}

\rm :\longmapsto\:I =  - \dfrac{ {sin}^{ - 1}  \sqrt{x} (1 -  2x)}{2}  +   \dfrac{ \:  \sqrt{x}  \:  \sqrt{1 -  {sin}^{2} y} }{2}

\rm :\longmapsto\:I =  - \dfrac{ {sin}^{ - 1}  \sqrt{x} (1 -  2x)}{2}  +   \dfrac{ \:  \sqrt{x}  \:  \sqrt{1 -  x} }{2}

On substituting the value of I in equation (1), we get

\rm =\dfrac{4}{\pi}\bigg[- \dfrac{ {sin}^{ - 1}  \sqrt{x} (1 -  2x)}{2}  +   \dfrac{ \:  \sqrt{x}  \:  \sqrt{1 -  x} }{2}\bigg]   -  x + c

\rm =\dfrac{2}{\pi}\bigg[-  {sin}^{ - 1}  \sqrt{x} (1 -  2x)  +   \sqrt{x}  \:  \sqrt{1 -  x}\bigg]   -  x + c

Hence,

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {sin}^{ - 1}  \sqrt{x} -  {cos}^{ - 1} \sqrt{x} }{ {sin}^{ - 1} \sqrt{x}  +  {cos}^{ - 1} \sqrt{x} } \: dx

\rm =\dfrac{2}{\pi}\bigg[-  {sin}^{ - 1}  \sqrt{x} (1 -  2x)  +   \sqrt{x}  \:  \sqrt{1 -  x}\bigg]   -  x + c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used :-

Integration by parts

\rm :\longmapsto\:\displaystyle\int\rm \: uvdx = u\displaystyle\int\rm v \: dx - \displaystyle\int\rm \bigg[\dfrac{d}{dx} u\displaystyle\int\rm v \: dx\bigg]dx

where, u and v are chosen according to the word ILATE.

\boxed{\tt{ \displaystyle\int\rm \: sinx \: dx \:  =  \:  -  \: cosx \:  +  \: c \: }}

\boxed{\tt{  \frac{d}{dx} \: x \:  =  \: 1 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions